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PREFACE

There are two groups of researchers who are interested in designing network
protocols and who cannot (yet) effectively communicate with one another con-
cerning these protocols. The first is the group of protocol verifiers, and the
second is the group of protocol implementors.

The main reason for the lack of effective communication between these
two groups is that these groups use languages with quite different semantics to
specify network protocols. On one hand, the protocol verifiers use specification
languages whose semantics are abstract, coarse-grained, and with large atomic-
ity. Clearly, protocol specifications that are developed based on such semantics
are easier to prove correct. On the other hand, the protocol implementors use
specification languages whose semantics are concrete, fine-grained, and with
small atomicity. Protocol specifications that are developed based on such se-
mantics are easier to implement using system programming languages such as
C, C++, and Java.

To help in closing this communication gap between the group of protocol
verifiers and the group of protocol implementors, we present in this monograph
a protocol specification language called the Timed Abstract Protocol (or TAP,

for short) notation. This notation is greatly influenced by the Abstract Protocol
Notation in the textbook Elements of Network Protocol Design, written by the
second author, Mohamed G. Gouda. The TAP notation has two types of seman-
tics: an abstract semantics that appeals to the protocol verifiers and a concrete
semantics that appeals to the protocol implementors group.

More significantly, we show in this monograph that the two types of se-
mantics of TAP are equivalent. Thus, the correctness of a TAP specification
of some protocol, that is established based on the abstract semantics of TAP,
is maintained when this specification is implemented based on the concrete
semantics of TAP. The equivalence between the abstract and concrete seman-
tics of TAP suggests the following three-step method for developing a correct
implementation of a protocol:

1. Specify the protocol using the TAP notation.
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2.

3.

Verify the correctness of the specification based on the abstract semantics
of TAP.

Implement the specification based on the concrete semantics of TAP.

To aid in step 3 of this method, we developed the Austin Protocol Compiler
(or APC, for short) that takes as input a TAP specification of some protocol and
produces as output C-code that implements this protocol based on the concrete
semantics of TAP. The design of the Austin Protocol Compiler is one of the
main features of this monograph.

This monograph is primarily directed towards protocol designers, verifiers,
reviewers, and implementors. It is also directed towards graduate students who
are interested in designing, verifying, and implementing network protocols.

The authors wish to express their thanks to their friends and colleagues at
the Department of Computer Sciences at The University of Texas at Austin for
their encouragement and support.

The Austin Protocol Compiler software, including the compiler, runtime
system, and the examples from this book, is available from the Austin Protocol
Compiler home page1.

1http://www.cs.utexas.edu/users/mcguire/software/apc/



ACKNOWLEDGEMENTS

The authors would like to thank Lorenzo Alvisi, Michael D. Dahlin, Mootaz
Elnozahy, and Aloysius K. Mok for their suggestions which have improved this
monograph.

Tommy M. McGuire would like to thank his friends and coworkers in
UTCS and elsewhere for their support: Kay Nettle, Fletcher Mattox, John
Chambers, Stephanie Tomlinson, Dan Machold, Cyndy Matuszek, Toren
Smith, Joe Trent, Scott Sutcliffe, Chris McCraw, Tony Bumpass, Casey
Cooper, Pat Horne, Chris Kotrla, Matt Larson, Bart Phillips, Carol Hyink,
Lewis Phillips and his ex-boss, Patti Spencer. Without their patience, this work
would not have been completed. He is also grateful for the support and encour-
agement of his family.

Mohamed G. Gouda is grateful to his parents from whom he inherited his
moral pursuit and work ethics. His mother, an art teacher and a school principal
in Cairo, was born on June 29, 1917 and passed away on September 10, 2002.

His father, a language teacher and an education official in Cairo, was born on
April 1, 1916 and passed away on June 3, 1996. This monograph is dedicated
to their living and loving memory.

T.M.M.
M.G.G.
Austin, TX
July, 2004



Chapter 1

NETWORK PROTOCOLS

A network protocol is the set of rules necessary to allow two or more compu-
tational processes to communicate with each other. These processes may be
executing on the same machine or on different machines connected by many
different kinds of networks. The processes may be separate operating system
processes, running different programs; or may be virtual processes, modular
parts of a single program; or may be components of the operating system. The
key factors are that there are more than one process and that they must commu-
nicate with each other.

As computational processes, the processes communicate by exchanging
well-defined messages across a communication channel, and the nature of this
exchange defines the rules making up a network protocol. The most conspic-
uous part of these rules is the format of the messages which the processes
exchange. More importantly, however, the rules describe the computation that
each of the processes must make in order to send the correct message contain-

ing the correct values at the correct time.

The rules making up the network protocol, both the message formats and
the computations, are embodied by programs, and the development of both the
abstract rules and the concrete programs is the subject of this work.

Protocol development problems

Network protocol development presents a number of problems beyond those of
developing traditional serial programs. Many of these problems are shared with
other parallel and distributed programming tasks, but many more are unique to
network protocols. The problems fall into one of three classes:

1. Intrinsic problems.
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2.

3.

Extrinsic problems.

Compatibility problems.

Intrinsic problems. In general, the intrinsic problems in network protocol
development include the same classes of safety and liveness problems associ-
ated with any distributed or parallel program. In any communicating system,
whether it is a parallel or distributed program or a network protocol, the order-
ing of events is not well determined: many events may happen at once and a
given sequence of events may not be repeatable. The number of potential order-
ings seriously hinders development, particularly when it is based on intuitions
gained from serial programs.

Beyond those classes of problems, intrinsic problems in network protocol
development include two two further areas: communication errors and security
problems.

Communication errors such as message loss or message corruption are not
normally seen in general distributed or parallel programming. (Although a dis-
tributed program may be running in an environment subject to such errors, it
is usually built on a network protocol that hides the errors.) However, these
errors are very common in the environment of message-passing network pro-
tocols; common enough to need to be a basic feature of the conceptual model
for network protocols.

Security problems should be considered an intrinsic problem of network
protocols, although they are often not. Some aspects of security in a network
protocol are confidentiality; integrity; authorization; authentication and its con-
verse, anonymity; and non-repudiation and its converse, plausible deniability.
All of these aspects should be treated as intrinsic problems for a protocol since
the number of possible attacks on each aspect make it impossible to foresee
all of them—conceptually, correcting vulnerabilities is easier than defending
against attacks.

Intrinsic problems of a network protocol apply, and can be described, in
isolation, without reference to any systems outside the processes and channels
involved in the protocol. For that same reason, they can also be handled in
isolation. Common, successful techniques for handling intrinsic problems use
formal methods such as correctness verification and model checking.
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Extrinsic problems. While many of the intrinsic problems of network proto-
col development are shared with the development of any distributed or parallel
program, other issues are unique to network protocols. The environment of
the network protocol introduces extrinsic problems of network protocol devel-
opment, and unfortunately, these extrinsic problems are often not solvable by

the same methods as the intrinsic problems. There are certainly interactions
between some extrinsic problems and the intrinsic problems described previ-
ously. For example, while communication errors themselves are best consid-
ered intrinsic faults, many characteristics of their occurrence are not. Consider
a protocol which sends a large number of small messages back-to-back, with
no delay between messages, across a network containing a router which, when
congested, drops the most recently received messages. The protocol may be
expecting uncorrelated message loss errors, allowing at least some messages
through the network, but in this case message losses are not uncorrelated—the
router will tend to drop the entire burst or at least the trailing portion of the
burst. In this case, the behavior of the protocol may be intrinsically correct, but
unsatisfactory in use.

On the other hand, extrinsic problems also include non-error issues such as
the effects of the protocol on other instances of the protocol or other protocols
sharing the same network. These issues are significantly different from intrin-
sic problems. A protocol’s correct behavior may cause congestion collapse in
a network shared by many instances of the protocol, or may starve other proto-
cols of network resources that must be shared. In general, such behavior cannot

be seen by examining the protocol in isolation; it often only becomes visible
with experience running a new protocol.

One set of examples of extrinsic problems in protocol development lies
in the original HyperText Transport Protocol, both versions 0.9 and (accord-
ing to the default behavior) 1.0[1]. The fundamental idea behind HTTP was
originally quite simple—the client opens a Transmission Control Protocol, or
TCP, connection with the server, makes a request, and reads the response. The
closing of the connection by the server indicates the end of the response; from
the client’s viewpoint, the connection resembles a normal file I/O stream. Two
problems with this simple approach are:
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1. Opening a TCP connection requires a three-message handshake and clos-
ing the connection may require four messages[2, 3].1 Since the request
and response are normally fairly small, the connection management mes-
sages represented a significant part of the traffic involved in the request.
Since much of the cost of the work in the network is effectively per-
message, this inefficiency primarily impacted the network itself.

2. Between the round trips of the connection establishment and TCP’s
congestion avoiding slow-start behavior, the connection-per-request ap-
proach resulted in significant latency[4, 3]. One response to this latency
was to use multiple connections to the same server to make several re-
lated requests simultaneously. Since congestion-control information was
not shared between connections, this response makes the overall set of
requests (for the resources associated with a single web page, for exam-
ple) behave in a more aggressive fashion in terms of congestion control,
again impacting the network[5].

The newer version of HTTP, 1.1 [6], attempts to solve those two problems by
keeping connections alive for multiple requests and by multiplexing several
requests simultaneously on the same connection. As a result, HTTP 1.1 is no
longer simple.

Compatibility problems. The final class of problems in network protocol
development does not directly concern the protocol itself, but rather the net-
work protocol development process, including interoperability, extensions, and
enhancements. Generally, all of the components of a distributed or parallel
program are developed together, as part of the same effort. Different protocol
components, such as different processes communicating by using a protocol or
different implementations of the same process in a given protocol, are not—
a process on one machine may communicate with a process on a completely
different type of machine elsewhere, with both processes being developed inde-
pendently in space and time. If protocol development does not center around a
coherent specification of the protocol, interoperability between the components
suffers.

1It is possible to piggy-back the connection closing flags on data messages, but many traces
of TCP connections do not show such behavior.
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A related problem involves changes in the protocol itself. After using a net-
work protocol for a period of time, additional features may need to be added to
the protocol or existing behavior of the protocol may need to be changed. Since
parts of the protocol are implemented separately, the altered protocol should be
capable of continuing to interoperate with the previous version. While the de-
tails of such changes are not foreseeable, if the original development of the
protocol does not include the possibility, the protocol may later need to be
scrapped entirely or its existence and inflexibility may hinder future progress.

Existing solutions

There are many successful methods of handling each of these problems, al-
though not all methods cover all of the problems successfully.

The most visibly successful method is used by the Internet Engineering
Task Force and the Internet community. This method is based on natural-
language protocol standards documents, the Internet Drafts and the Request
For Comments series, along with interoperating implementations. The process

for Internet standards, including protocols, is described in RFC2026[7]. The
goals of the process, from RFC2026, are:

In general, an Internet Standard is a specification that is stable and
well-understood, is technically competent, has multiple, indepen-
dent, and interoperable implementations with substantial opera-
tional experience, enjoys significant public support, and is recog-
nizably useful in some or all parts of the Internet.

Unfortunately, standards documents are frequently large and imprecise.
Often the only formal specifications of a protocol are the implementations,
which are often not identified in the standards, are frequently not available for
inspection, and are themselves far from concise or understandable. For in-
stance, Wright and Stevens in Volume 2 of TCP/IP Illustrated[8] present much
of the code from the BSD4.4 TCP/IP suite implementation, and it is a rather
large volume. Additionally, as can be seen from TCP/IP Illustrated, the im-
plementation often hides the important details of a protocol in a larger mass of
code; important details handling intrinsic or extrinsic issues frequently com-
prise only a small fraction of the implementation, while these details require a
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great deal of research and constitute the largest part of the difficulties in proto-
col development. For example, Nagle’s algorithm[9], which adaptively inhibits
small messages in TCP connections and thus helps avoid network congestion
collapse, requires approximately four lines of code in TCP/IP Illustrated’s pre-
sentation. Refinements to Nagle’s algorithm, originally published in 1984, are
still being suggested; for example, by Minshall, et al., in 1999[10].

The key to understanding and implementing any complex system with vi-
tal but minuscule details, particularly in such an ad-hoc environment, is mod-
ularization. In the case of network protocols, modularization almost always
involves layering.

Protocol layering

Modularization proceeds by identifying some aspect of a system and encap-
sulating that aspect as a component behind some interface which allows other
components to manipulate it while hiding the details of the component. In net-
work protocols, each component is a layer, conceptually built using the services
provided by a lower layer and in turn providing services to a higher layer.

Figure 1 shows the most common illustration of such layering, the Interna-
tional Standards Organization’s (ISO) Open Systems Interconnect (OSI) refer-
ence model[11]. In this model, each layer communicates with the layers above
and below it, and conceptually, with the corresponding layer in some other pro-
cess. In practice, this model provides notation and descriptive terms; it is not
commonly used for implementations.

Figure 1.2 shows a similar model used by the Internet protocols. It has
been referred to as the hourglass model, since the Internet Protocol acts as a
common unifying layer. In contrast with the OSI model, this model is the basis
for the implementation of the Internet, not only from the standpoint of the
operating system’s code, but also in the layout of the messages exchanged—as
each message is sent, each descending layer prepends any information it uses
to the message as a header and as each message is received, each ascending
layer removes the corresponding header.

For support in developing layered protocols, one framework, the x-
Kernel[12, 13], stands out. The x-Kernel provides an efficient scaffolding for
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Figure 1.1: The OSI Reference Model. Messages being sent logically descend

through the layers; messages being received ascend.

Figure 1.2: The Internet model (the hourglass).

assembling a number of network protocol layers, where each layer is imple-
mented independently using the library provided by the x-Kernel.

Unfortunately, layering introduces a new sin: the layering violation. Like
the crime of heresy, a layering violation may only be visible within its own
model. Specifically, a layering violation occurs when a layer inappropriately
uses an interface of a layer greater than or less than

While such violations often indicate a failure in the modularity of the de-
sign, in many cases layering becomes a goal itself2, resulting in contorted pro-
tocol designs. For example, one feature of TCP that has caused layering vio-
lation arguments is Path MTU discovery[14]. The maximum transmission unit
(MTU) of a network link is the maximum size message that can be sent over
the link. The Path MTU (PMTU) is the smallest of the MTUs in the network
between two processes. If a process sends a message that is larger than the
MTU for a link, IP will fragment the message into parts small enough to pass

2 In fact, Peterson and Davie[13] define protocol in terms of the layers.



8 Protocol layering

through the link. These fragments are not reassembled until all reach the desti-
nation process and the loss of a single fragment results in the loss of the whole
message. Fragmenting and reassembling messages also requires processing
time from network components which may not have it to spare—routers, in
the first case, and the critical path for incoming messages, in the second. For
these and other reasons, protocols such as TCP would prefer not to have their
messages fragmented. On the other hand, these protocols would also prefer to

use the largest message possible, since that reduces the overhead needed for
the communication.

The potential layering violation revolves around the fact that MTU sizes
are attributes of network layers below IP, while the protocols attempting to
identify the best message size are above IP and IP does not provide them with
path MTU information. Path MTU discovery uses the “don’t fragment” flag in
IP messages, which causes an IP router to drop any message that is too large
and respond with an ICMP “can’t fragment” error message. TCP (or another
higher-layer protocol) can receive this error and then adjust its transmissions
to find the largest workable message size. Whether this is a layering violation
or not, RFC1191, describing path MTU discovery, is a Draft Standard on the
Internet Architecture Board Standards Track.

There are similar arguments around explicit congestion notification[15] and
many other useful techniques. The proliferation of these and other techniques
leads to the IETF being described as a “architectural pretzel factory”[16]. In
response, Braden, Farber, and Handley[17] propose a “role-based architecture”
as an non-layered alternative; whether it will be successful as such is an open
question.

The problems with HTTP described previously also demonstrate the dif-
ficulties with a layered architecture—these problems show a conflict between
the behavior of HTTP and the intended use of TCP. Unfortunately, since the
development of congestion-controlled transport protocols such as TCP and the
deployment of such protocols are both difficult, adding another transport pro-
tocol with semantics better matched to HTTP’s behavior did not occur.
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Protocol frameworks

In Figure 1.2, the distance in terms of behavior between what the protocols of
the transport layer provide and what the protocols of the application layer need
is broad. Since many similar application protocols make individual choices
from a relatively limited set of behaviors, protocol frameworks can be designed
to bridge this distance, in effect supplying intermediary layers specifically de-
signed for a class of applications.

Birman, et al. [18, 19], have developed several such frameworks (such as
Horus and Ensemble) based on micro-protocols and layering, where protocol
components implementing various behaviors can be assembled (somewhat like
Lego blocks) to create a system combining the behaviors. Unfortunately, the
protocol composition style does not necessarily take into account inter-micro-
protocol behavioral relationships which do not allow arbitrary composition.3

Another framework is the Blocks Extensible Exchange Protocol, BEEP[20,
21]. The BEEP framework is designed to handle asynchronous, message-
passing, connection-oriented application protocols, and to provide for the fol-
lowing aspects of application behavior[22]:

framing, which tells how the beginning and ending of each message is
delimited;

encoding, which tells how a message is represented when exchanged;

reporting, which tells how errors are described;

asynchrony, which tells how independent exchanges are handled;

authentication, which tells how the peers at each end of the connection
are identified and verified; and,

privacy, which tells how the exchanges are protected against third-party
interception or modification.

These aspects are described by “profiles” which define the syntax and seman-
tics of the messages exchanged. BEEP offers a great deal of flexibility for

3Specifically, in one presentation, two blocks labelled “compression” and “encryption” were
shown composed both ways; unfortunately, these two components cannot be arbitrarily com-
posed because encryption results in incompressible data.
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handling much of the complexity in designing application protocols. Unfor-
tunately, the framework needed to provide the flexibility is quite complicated:
For example, Rose[21] says, “Messages are arbitrary MIME [Multipurpose In-
ternet Mail Extensions] content, but are usually textual (structured using XML
[the eXtensible Markup Language])”.

Although these frameworks are quite successful in their intended environ-
ment, their size and complexity limit their applicability in environments with
restricted space or computational power, in addition to the limits imposed by
their area of focus. Also, they are built with, and intended to be used with,
code written in a traditional programming language. As described previously,
most programming languages obscure the network protocol-specific issues and
problems.

Finally, while frameworks provide flexibility, this flexibility is only avail-
able in the domain of the framework—using a framework outside its design
domain is likely to be an uphill battle.

Protocol languages

Frameworks, such as those described previously, serve primarily as runtime
support for code written in a traditional programming language. Like the ad
hoc techniques described earlier, they have two limitations:

Traditional programming languages do not highlight network protocol-
specific behavior, and impede understanding the protocol’s intrinsic, ex-
trinsic, and compatibility issues.

The frameworks’ size and complexity appear at runtime. (Although
some frameworks such as Ensemble minimize their runtime footprint
by performing optimizations at compile-time, such efforts are limited by
the granularity of the framework.)

An alternative approach is to create a notation intended for network proto-
cols, in order to deal with one or both of those limitations. Most research in
this area is aimed at the first limitation, as it is the most difficult.

Notations or domain specific languages intended for network protocols
come in two varieties: permissive and strict.
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Permissive notations. Permissive notations are designed primarily to make
implementation easy. These notations expose the behavior of the protocol,
and are often very flexible, but are not typically intended to address protocol
development problems formally and verifiably.

A fine example of a permissive notation is Prolac[23, 24], a statically-typed,
object-oriented programming language designed for network protocols. The
explicit goals of Prolac are readability, efficiency, evolvability, and behavioral
predictiblity. This predictability, however, does not come based on formal rea-
soning, but rather on informal specifications and easing their translation into
code. Also, Prolac omits any protocol-specific abstractions such as message
transmission. As a result, Prolac lacks a strong semantic grounding for ver-
ification. Approaches with similar, but less extreme, limitations are taken in
Morpheus[25] and Promela++[26].

On the other hand, Teapot[27], a language for writing cache coherence pro-
tocols, is primarily a permissive notation, generating C code, but is also capa-
ble of generating a model specification for the model checker[28]. The
combination, as described by Chandra[29], highlights the power of a domain-
specific language linked with formal methods.

Likewise, ESP[30, 31, 32] is a language for describing event-driven state
machines for programmable devices with limited CPU and memory resources.
The ESP compiler generates both efficient C code and Promela models for
checking the the state machines. However, ESP is not designed for network
protocols, and is not intended for human verification.

Strict notations. Strict notations are aimed primarily at making correctness
verification easy and only secondarily (if at all) at implementation. The pri-
mary distinction among the strict notations is whether they are intended for
automatic model checking or manual verification. The notations intended for
automatic model checking often have a more complex, flexible structure, but
oppose that flexibility with tight limits necessary for efficient model checking,
such as a requirement that the models have a finite state. Notations intended
for manual verification have a much simpler structure, because the complexity
of the notation seriously impairs human verification, but do not place arbitrary
limits on the protocol under study.

Two strict, very abstract notations are Unity[33] and TLA+[34]. Unfortu-
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nately, as Chandy and Misra say when comparing Unity with other program-
ming approaches, “[The] generality of Unity is also its limitation when applied
to a specific class of problems.” Other strict notations more focused on com-
munications are Estelle, LOTOS, and SDL[35], the UDP Calculus[36], and
Promela[37, 38, 39]. These notations differ in a number of areas, including
their complexity and ability to express network protocols specifically, but all
are grounded in high-level abstraction. The tools available for each lean to-
wards verification and model checking aids rather than executable interpreters
or compilers. Indeed, due to the complexity and abstraction, protocols com-
piled from these notations, if such is possible at all, frequently exhibit poor per-
formance. Finally, the compilers required are themselves complex programs.

On the other end of the strict notations is Esterel[40]. Esterel is a syn-
chronous language intended for specifying protocol behavior abstractly, but
Castelluccia, et al. [41], describe a compiler for protocols that generates effi-
cient code. On the other hand, Esterel is not focused on message-passing net-
work protocols and it is neither sufficiently abstract to easily verify protocols
nor sufficiently simple to easily implement them.

The Austin Protocol Compiler

The Austin Protocol Compiler, and the Timed Abstract Protocol notation, are
the subject of this work. The Timed Abstract Protocol notation, or TAP, is
a small, simple language designed specifically for describing asynchronous
message-passing network protocols with the ultimate goal of verification. TAP
is based on the Abstract Protocol notation, or AP, developed by Gouda[42],
which takes a very abstract, high level approach to network protocols. Un-
fortunately, like several of the other strict notations described previously, AP
makes very strong guarantees about time, concurrency, and failure that make
protocol verification easy but protocol implementation difficult.

For example, in AP a timeout is an action guarded by a global predicate:
the decision whether the action may be executed can potentially be based on the
values of variables in remote processes and the contents of the network between
processes as well as the local state. Also, AP guarantees that actions, made up
of an arbitrary sequence of statements, and errors, which come from a small
class, must execute atomically and fairly, and that messages are propagated
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through the channels of the network immediately.
The guarantees of AP make it impractical to implement directly. Further,

expressing some of the major sources of complexity in some protocols is dif-
ficult, since AP does not provide a direct model of time. TCP[43, 44] itself is
one example that exposes this problem. This protocol is founded on a sliding-
window protocol for transferring data, but the majority of the complexity in
TCP involves when messages are to be sent—the round-trip time, from the
sender to the receiver and back, and the retransmission time for lost messages
are important factors to TCP. These factors are precisely those which are diffi-
cult to express in the high-level of abstraction of AP.

Therefore, the Timed Abstract Protocol notation modifies AP slightly, pre-
serving the ease of verification while adding the ability to express temporal
behavior and moving slightly towards implementability. It also has two execu-
tion models: a high-level, abstract model allowing protocols to be understood
and verified readily, and a low-level, concrete model which makes efficient im-
plementation possible. The relationship between these two models, which is
described in detail later, is complex. However, in short, for many protocols the
two models are equivalent—a protocol implemented according to the concrete
model behaves the same as a protocol understandable in the abstract model.

The final piece of the protocol development puzzle is the Austin Protocol
Compiler, or APC, which can transform a process described in TAP into ex-
ecutable code in C. The combination of the Timed Abstract Protocol notation
with the Austin Protocol Compiler satisfies the original three classes of network
protocol development problems in the following ways:

1. The simple domain-specific language of TAP, with its underlying formal
model, addresses the intrinsic problems of protocol development through
its clarity and verifiability.

2. The clarity of the TAP language, along with the fast turn-around of a
compiler, allows practical experience with a protocol while it is still in
development.

3. The formal TAP notation, with its emphasis on the protocol’s details, and
the ability of the compiler to create a running reference model create an
environment where the compatibility problems in protocol development
can be handled.
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The next chapter discusses the TAP notation in detail, and the follow-
ing chapter presents the two execution models. Subsequently, Chapter 4 and

Chapter 5 argue the equivalence of the two execution models. Then, Chapter 6
describes the Austin Protocol Compiler and its runtime system. The following
two chapters present examples of the use of the TAP notation and APC. A final
chapter contains concluding remarks.



Chapter 2

THE TIMED ABSTRACT PROTOCOL NOTATION

The Timed Abstract Protocol notation, or TAP, is designed to be a small lan-
guage for describing asynchronous, message passing network protocols. This
focus entails several features:

TAP is intended to describe protocols which normally wait for an ex-
ternally generated event such as a received message or a timeout, then
perform local computation to handle the event. As a result, the processes
in TAP are made up of guarded actions, where the guards are based on
the availability of a received message, or a timeout occurance as well as
local state.

Network protocols generally deal with two kinds of information: pro-
tocol control information, which is mainly made up of integral values
and process addresses, and data, which is uninterpreted by the protocol.
Also, the processing of a protocol at a local level is usually simple and
should terminate quickly. Following these two observations, the state of
processes is limited to minimal control information and the control struc-
tures are kept simple. These limitations serve to ease understanding and
verification.

Specialized operations, such as sending a message, are necessary for
asynchronous message passing protocols. These operations are inte-
grated into the language where they have specific semantics, again easing
understanding and verification.

In TAP, a network protocol consists of two or more processes, which com-
municate by sending messages across channels. In this chapter, we begin to
present the syntax and general semantics of TAP by discussing a simple exam-
ple protocol.
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Messages and channels

In TAP, a message is a sequence of fields, where each field is either an integral
value consisting of protocol control information or a byte array containing un-
interpreted data. The integral fields can be either constant or variable; constant
fields can be used to distinguish messages while variable fields carry protocol
information. For example, Figure 2.1 shows two messages, each of which has
a single, constant field identifying it. Figure 2.1 does not show the full range of
options; variable fields would not specify values and data fields would specify
the field size in bytes, with either a constant or non-constant expression.

Figure 2.1: Request/reply messages.

A channel is a queue of messages. Messages are inserted into the tail of
the queue by the sending process and removed from the head by the receiving
process.

When discussing a protocol, the contents of a channel are referred to by
a sequence of messages surrounded by angle brackets and separated by semi-
colons: A channel itself is referred to by the notation where
and are the names of the sending process and the receiving process, respec-
tively.

In the TAP notation, channels are implicit—they are identified by the ab-
stract addresses of the sending and receiving processes. Since each process is
itself one of the endpoints, only the remote address is needed within a process;
the name of the process identifies the address of its local endpoint.

Every process is connected to every other process by channels in both di-
rections. As a result, every process can send messages to any other process it
has the address of.
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Processes

A process consists of a local state and a set of actions describing the behavior
of the process. Figure 2.2 shows the two processes of a simple request/reply
protocol.

Figure 2.2: Request/reply protocol, version 1.

The local state of a process is described by variables and constants, of one
of a number of data types. There are two data types used in processes p and q
in Figure 2.2:

1. An address is used to identify a channel between the current process and
another, either to send a message to another process or to recognize the

sender of a received message.1

2. A boolean is either true or false.

The remaining basic data type, integer, has values from 0 to The
syntax of TAP also allows smaller ranges of integers as well as multidimen-
sional arrays of any of these data types.

1An address is special in that it cannot be assigned a literal value in TAP. Instead, its value
must be provided by the environment of the process. As described later, variable addresses
receive values when used in receive guards. Additionally, the Austin Protocol Compiler runtime
system provides the capability to set addresses outside the executable code generated by the
compiler.
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Actions

Actions describe the computation performed by a process. Each action consists
of a guard, describing the circumstances under which the action is enabled,
and a body, providing the statements which are executed when the action is
executed.

When discussing protocol computations, the individual actions are referred
to by the notation where is the name of the process and is the number
of the action within the process. Similarly, refers to a variable or constant
id in a process

There are two kinds of action guards in Figure 2.2:

1. A local guard is a Boolean predicate involving the local state of the pro-
cess. The action is enabled when the predicate is true. An example of a
local guard is that of p.1, the first action of process p in Figure 2.2. The
guard of this action is the predicate readyp.

2. A receive guard identifies a message and the address of a remote process
and is enabled when a matching message is at the head of the channel
from a remote process. An example is p.2, the second action of process
p. The guard of this action is rcv rply from q, which is enabled when
a rply message is at the head of the channel form q to p. When this
action is selected for execution, as discussed later, the rply message will
be removed from the channel.

Again, the address here is special—a receive guard with a constant ad-

dress will only be enabled when the matching message is at the head
of the channel from the process identified by the address. On the other
hand, a receive guard with a variable address is enabled when the match-
ing message is at the head of the channel from any process; during the
execution of the action, the address variable takes as its value the address
of the remote process.

Statements

Most of the statements in TAP are relatively conventional. There are two kinds
of statements in Figure 2.2:
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The first is a send statement, send rqst to q. This statement inserts the
message rqst into ch.p.q.

The second is an assignment statement, such as readyp := false. TAP
supports multiple assignment, where a list of variables on the left-hand-
side is matched by a list of expressions on the right-hand-side.

When a message is received or sent by an action, it introduces a message
structure that is local to the action. This message structure has records labeled
by the field names from the message. When a message is received, the records
contain the values of the fields from the incoming message. The values of
the fields of messages to be sent can be set by assigning to the records before
sending the message. These structures, however, do not participate in the state
of the process because they are not preserved between actions.

The statements are sequentially combined by separating them with a semi-
colon.

Additional statements are also available in TAP:

The skip statement does nothing.

A conditional statement,

chooses a branch nondeterministically from the branches with
true predicates among and executes the corresponding state-
ment

The iteration statement, do od, executes statement repeatedly,
as long as predicate is true.

Protocol style

A number of issues apply to the design of protocols specified in the TAP nota-
tion. One is illustrated in Figure 2.2: protocol quiesence. Another two are loop
termination, and conditional completeness.

The protocol should be quiescent: it should not be possible for any process
in the protocol to continue executing local actions indefinitely. An action, in
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TAP, is executed when its guard is enabled; this is at variance with AP, where
an action is executed only when its guard is enabled. The difference is that a
process in TAP cannot wait when an action is enabled. For example, if an action
sending a message has a true local guard, the action will flood the network with
instances of mesasge it sends.

Instead, every process in the protocol should only execute a finite number
of local actions before every local action becomes disabled—this prevents the
process from abusing local resources. Such a process can instead wait for a
message to be received or for a timeout to expire.

A related issue is loop termination. Although neither process p nor process
q needs a do statement, other protocols will, and the necessity that actions
be atomic requires that loops terminate deterministically, and preferably after
performing only the computations needed by the protocol. This prevents the
execution of a single action from blocking all of the other computations of a
process.

Finally, the conditional statement syntactically uses multiple branches,
each with a boolean predicate and a body of statements. For clarity, the pred-
icates should be mutually exclusive, so that a single branch is possible in any
state, and the disjunction of the predicates should be true, so that some branch
is taken from any state.

Justification

The TAP notation is intended to specify message-passing network protocols
simply and clearly. Each of the features of the notation supports this goal:

1. The message specification describes the minimal features needed for
most common messages of existing protocols. It is neither as com-
plete nor as complex as other message specification languages such as
ASN.1[45] and XDR[46]. Instead, the TAP message notation is re-
stricted to describing a simple format which is interoperable with many
Internet protocols while allowing the programmer the flexibility to deal
with other messages.

2. Processes have a simple structure, particularly in the definition of their

local state and the limited set of actions used to describe their behavior.
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Coupled with the execution model, described in the next chapter, these
features make reasoning about network protocols easier.

3. Like Promela[39], Teapot[27], Esterel[40], and other formal notations,
TAP tries to avoid fine-grained data manipulation while expressing over-
all control structure. The statements describing the behavior of actions
are limited in number and simplified, when compared with general pur-
pose languages. This simplification, first, eases reasoning about the be-
havior, and second, reduces the tendency to include overly complex be-
havior or behavior unrelated to the network protocol in the specification.

This chapter has only described the basic syntax and semantics of TAP. The
details of TAP computations are the subject of the next chapter. However, the
next section contains a detailed discussion of the TAP language, based on its
grammar. Understanding the next section is not necessary in order to under-
stand subsequent chapters.

Details of TAP

In previous sections, we examined the TAP notation from an abstract view-
point, as a formal notation for specifying network protocols. Much of the re-

mainder of this work will continue with that viewpoint, but this section exam-
ines the TAP notation as a programming language.

The discussion of the complete of the TAP language follows the structure
of the TAP grammar—it re-covers the parts of TAP described previously and
includes features of TAP that will not be described fully until the next chapter
as well as features that are not further mentioned. The grammar is described
using the Extended Backus-Naur Format, with the following conventions:

{...} indicates zero or more copies of the contained elements.

[...] indicates zero or one copy of the contained elements; i.e. the con-
tents are optional.

(... ...) indicates a choice between the contained elements.

Literal text is presented in quotation marks.
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Non-literal token elements are in italics. There are three of these:

A string is a quote-delimited string of characters which does not
span lines. Internal quotes and newlines can be escaped by a back-
slash. These strings cannot be manipulated in TAP, but can serve
as arguments to functions as well as to directives as described later.

A number is one or more decimal digits, indicating a non-negative
number.

An id is an identifier, made up of a letter followed by any number
of letters or numbers.

Parsing of each source file begins with the start symbol:

The source file given to the compiler consists of a sequence of elements.
Each element is either an import directive, an include directive, a message def-
inition, or a process definition.

The import directive looks for the file named in the string. The contents of
this file are read and processed by the compiler before any subsequent elements

in the current source file.
The include directive inserts a C include directive in the output file, calling

for the file named by the string. These included files form part of the interface
between the APC-generated C module and external C code.

Message syntax
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Each message definition consists of a header and a body. The message
header primarily provides a name for the message. The body of the message is
a sequence of fields, separated by commas. The message definition is used by
the compiler to produce:

1.

2.

A C structure with records for each field in the message.

Parsing and marshalling functions, which interpret and recognize re-
ceived messages and convert a message structure to a sequence of bytes
for transmission, respectively.

Optionally, the message can be marked as external, in which case the com-
piler does not generate the C functions for marshalling and parsing the mes-
sage. This allows the programmer to provide such functions, in order to handle
more complex messages than those that can be described by TAP. Also option-
ally, two functions can be identified which process the message immediately
after the fields in the message have been parsed (m-in) and immediately before
the message is sent (m-out). These functions receive the message buffer as well
as the structure describing the fields of the message, allowing them to compute
a checksum for the message, for example.

Each field definition consists of a field-name, a field-type, and optionally,
a field-value. If the field-value is present, the field is considered constant; the
field is automatically set to that value before the message is sent and received
messages are checked to ensure the field contains the proper value as part of
the process of recognizing messages. In these expressions, the only allowable
values are constants and the names of previous fields.
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A field-type describes the size and type of the contents of the field. The ex-
pression describing the size can contain literal values or the names of previous

fields in the message. The type of the field is implied by the use of bits or bytes
to describe the field.2

A bit field contains an unsigned integer value. The size expression de-
scribes the size of the field in bits; it must not be larger than 32 bits.

A byte field contains a sequence of data bytes. The size expression de-
scribes the size of the field in 8-bit bytes. For a received message, the
value of the record for the field in the structure generated by the com-
piler will be a pointer to the data in the original message buffer. When
building a message to be sent, the value of the record should be set to a
pointer to a sequence of bytes which will remain valid until the message
is sent.

Each message has an additional field, named size, which indicates the over-
all size of the message in bytes. When receiving a message terminating with an
arbitrary-length data field, the size field (minus the size of any previous fields)

provides the length of the final field. When sending such a message, assigning
to the size field allows the message marshalling functions to copy the appropri-
ate number of bytes from the array pointed to by the data field.

Process syntax

Each process definition also consists of a header and a body. The process
header provides a name for the process as well as the optional declarations for

2 For grammatical correctness, “bit” is allowed as a synonym for “bits” and likewise, “byte”
for “bytes”.
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the process’s constants and variables. The process’s body contains a sequence
of actions.

In each declaration, a sequence of identifiers which name constants or vari-
ables are associated with a type and optionally an initial value. The basic types
allowed by TAP are 32-bit integers, booleans, and addresses. The integer type
can be specified as either a general integer or as a range of allowed values.

The initial values for variables or constants must match the type of the
variable or constant; the value of an integer is a number, and the value of a
boolean is either true or false. Addresses may not be given an initial value in
TAP. (The initial value of an address can be given via the C interface while
initializing the APC runtime system. See Chapter 6 for more information.)

The only complex type supported by TAP is the array, with any number
of dimensions. The allowed indices of each array dimension is given by the
array-size value; indices range from 0 to the array-size–1. If an initial value is

given for an array, each element of the array is set to the value.

Action syntax
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In a TAP process, actions are separated by a box, written as two square
brackets: [ ]. Each action consists of a guard and a sequence of statements.
There are three forms of guards: local, receive, and timeout. Chapter 3 de-
scribes the behavior of each of the guards in more detail, and Chapter 6 con-
tains the details of the runtime support for each guard.

Local guards are made up of a predicate, a boolean expression. The action
is enabled when the guard evaluates to true.

Receive guards specify a message accepted by the action and an address.
The guard may be enabled if and only if the received message matches the
message specified by the receive guard. If the address is a constant, then the
action will only be enabled if the message is from the process identified by
the address. If the address is a variable, then the action will be enabled no
matter where the message is from and the address will be set to the source of
the message.

Timeout actions provide a name, t-name, for the action for use with the ac-
tivation statement; the behavior of such actions is described in the next chapter.

Statement syntax

In any sequence of statements, the individual statements are separated by
semicolons. The two fundamental statements are skip, which does nothing,
and a function call, which invokes a C function and is more fully described on
page 28.

TAP assignment statements allow multiple values to be assigned simultane-
ously; in the code generated by the APC compiler, each expression is evaluated
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independently and stored in a temporary location. Subsequently, the values
are assigned to the left-hand-side locations. Locations which can be assigned
values are either variables, message fields, or array elements.

A fundamental operation in TAP is sending a message, identified by m-
name, to a process, identified by the address. Any necessary fields in the mes-
sage should be set before executing the send statement.

TAP provides a conditional statement with guarded branches separated by
the box. Each branch consists of a boolean expression guarding a sequence of
statements. In execution, one branch with a true-valued expression is chosen
and executed. If no branches are enabled, execution continues with the next
statement after the conditional.

The iteration statement in TAP is made up of a single guarded statement,
which provides a sequence of statements which are executed repeatedly as long
as the expression evaluates to true.

The activate statement, along with the timeout guards, is discussed in detail
in Chapter 3. In general terms, it sets a timer associated with the timeout guard
identified by t-name. The delay gives the value of the timer3, after which the
timeout guard enables the corresponding action.

3 In milliseconds.
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Expression syntax

In order to simplify the description of the TAP expression, the grammar rule is
broken into a number of sub-rules below. The expression rule is the combina-
tion of all of the individual sub-rules.

The fundamental expressions in TAP are variable names, numbers, true and
false, and strings (which may only be used as arguments to function calls).

Further expressions are field references, array references, and function
calls. Field references are described by a message name and either a field
within the message or the special field, “size”, which contains the overall size
of the message in bytes.

Array references follow the traditional syntax, with a numeric expressions
describing the element within the array.

A function call identifies a C function by name and executes it with the
arguments given by the expressions. The C type of the return value of the
function should be one of:

void, for functions called as statements,

unsigned long, for integer values, or

unsigned char *, for an assignment to a message’s data field.
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The next group of general expressions include the normal binary and unary
operators. The binary operators are equality, inequality, boolean operators, and
arithmetic operators. Unary operators are boolean and arithmetic negation.

Figure 2.3: TAP operator precedence, from lowest to highest.

These operators have the precedence described in Figure 2.3.

The final form of expression, a bare reference to a size message field, is
only valid in an expression that is part of a message definition. The value of
the “size” expression is the overall size of the message in bytes.



Chapter 3

EXECUTION MODELS OF NETWORK
PROTOCOLS

An execution model for a programming notation describes the basic features of
the computations for programs in the notation. These features include, for ex-
ample, what information is captured at a state of the computation, what events
can happen at each state, and the actual behavior of the events described in the
notation.

With sequential languages, only one execution model is needed. A single
execution model can support both:

Effective reasoning about the program described in the notation, to pro-
duce both a clear, elegant design as well as arguments about the correct
behavior of the program.

Simple and efficient implementation of the program.

However, when the environment becomes more complex, as it does in the
case of message-passing network protocols, a single model may not be suffi-
cient. In fact, attempting to satisfy both goals in a single model may result in
satisfying neither.

Two Models

This chapter presents two models for the execution of the Timed Abstract Pro-
tocol notation:

The abstract model is intended to make protocol verification easy and to
allow clear and elegant design. This model abstracts away many details
of protocol execution and is not representative of reality.
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The concrete model is intended to be easily implemented, with no fea-
tures that would be complex or inefficient to provide in a running system.

With two models, a single protocol has two meanings. This chapter de-
scribes the two models and the next two chapters demonstrate the relationship
between the two models and show under what conditions they are equivalent.

Abstract Execution Model

The abstract execution model is intended to provide a conceptual framework for
thinking about network protocols. Since the environment of network protocols
is complex, it is necessary for an abstract model to make strong, unrealistic
assumptions. The goals of these assumptions are to simplify reasoning about
network protocols while still providing a useful model representing the network
protocol environment.

Abstract protocol state

The state of a protocol in the abstract execution model consists entirely of:

The values of the variables of every process in the protocol, and

The contents of the channel between each pair of process.

In the abstract execution model, when the protocol begins execution, the values
of the variables of the initial state of each process are given in the process
definition and all of the channels are empty.

Abstract protocol execution

The computation of the protocol in the abstract model consists of a sequence
of action executions, moving the protocol from one state to the next. The com-
putation of a protocol proceeds under the following assumptions concerning
atomicity, message propagation, and fairness:

Global atomicity: Only one action is executed at a time. At each state,
one action from all of the enabled actions in all of the processes in the
protocol is nondeterministically chosen and executed.
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Immediate message propagation: When a message is sent, if it is the
first message in the channel, then the receiving action for that message is
enabled for execution at the next state.

Global fairness: In computation consisting of an infinite number of
states, if an action becomes enabled at a state then it is either disabled or
chosen for execution at a subsequent state.

From these assumptions, the computation of the request/reply protocol of
Figure 2.2 can be understood. At the initial state, readyp is true and the chan-
nels are empty, so p.1 is the only enabled action. That action sends a rqst
message to process q, and sets readyp to false. At the second state, q.1 is the
only enabled action, and this action receives the rqst message and responds
with a rply message. At the third state, p.2 is the only enabled action, and
it sets readyp to true, returning the protocol to the initial state. Computation
continues in this fashion forever; see Figure 3.1.

Figure 3.1: State transitions for the request/reply protocol, version 1.

Unfortunately, the actual behavior of a network protocol is not this neat and
the model so far presented is too unrealistic. At a minimum, it leaves out an

important aspect of network protocol behavior: faults.

Abstract faults

The only faults described in the abstract execution model are message faults,
which are the most common faults that network protocols must deal with.
There are four possible message faults:
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1.

2.

3.

4.

Message loss: A message in a channel is removed from the channel.

Message corruption: A message in a channel is replaced with the special
message, error, which indicates that the message has been corrupted in
some fashion.

Message reordering: The order of two messages in the same channel is
swapped. A channel containing <m;n> subsequently contains <n;m>.

Message duplication: A message in a channel is duplicated. A channel

containing <m> subsequently contains <m;m>.

The specific faults that a protocol may face depend on the environment in
which the protocol executes. For example, if the protocol is intended to execute
in an environment that provides message checksums, the possibility of message
corruption is eliminated—a message corruption failure will be transformed into
a message loss failure.

The message faults are treated almost identically to the other actions; if
a channel contains a suitable message or messages, fault actions are enabled
and can be chosen and executed. However, in a computation consisting of an
infinite number of states, faults are rare: There can only be a finite number of
faults.

With the addition of message faults, the request/reply protocol of Figure 2.2
has problems. On the one hand, the protocol need not deal with message re-
ordering since the protocol has only one message in any channel at a time.
Also, additional actions could be easily be added to the two processes to receive
corrupt error messages and the protocol could be made to recognize duplicated
messages by using message sequence numbers. On the other hand, if either the
rqst or rply is lost, the protocol deadlocks. Each of the processes waits for a
message that cannot arrive, and the TAP language as so far described provides
no method of escaping this deadlock. The solution is the subject of the next
section.

Abstract timeout behavior

In order to handle message loss, TAP has an additional action guard and an
additional statement:
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The timeout guard, timeout provides a name, for the action. This
name is used by the activation statement.

The activation statement, act in provides a delay, between the
activation statement being executed and the timeout action becoming
enabled. For the request/reply protocol in this abstract model, the delay
is essentially arbitrary—any non-zero delay will have the same behavior.
However, in a protocol with multiple timeout actions or multiple delays,
the delay values will describe the relative behavior of the timeouts.

Every timeout guard has a time variable associated with it, which either is
null or has a numeric delay. Initially, the value of every time variable is null.
The execution of an activation statement with a timeout guard name sets the
value of the time variable associated with the timeout guard to the delay given
in the activation statement.

At any abstract state where no action is enabled, the values of all of the
non-null time variables are reduced by the value of the smallest non-null time
variable, making the value of the smallest time variable or variables zero. A
time variable with a zero value enables the associated timeout guard, and at a
state where any time variable has a value of zero, only a timeout action can be

executed. The execution of the timeout action resets its time variable to null.

Figure 3.2: Request/reply protocol, version 2.
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Figure 3.2 shows process p with the addition of an activation statement
and an action with a timeout guard. This version of the process, intended to
handle message loss, executes an activation statement after sending a rqst, and
the corresponding timeout action resends the rqst. Process q remains the same
as in Figure 2.2.

In process p, the timeout delay used by the activation statements is 1000 ms,
which must be an upper bound on the round-trip delay, by assumption. To
avoid such assumptions, a protocol should simply choose the delay sensibly or
dynamically adjust the delay, but will need to be prepared to handle duplicated
messages.

Abstract execution of the request/reply protocol

The execution of the request/reply protocol of Figure 3.2 is more complex than
the execution described on page 33. Figure 3.3 shows the state diagram of the
protocol. In this diagram, State 1 represents situations where readyp is true and
process p can send a rqst. States 2 and 3 represent situations with a message
in one of the channels. State 4 represents situations where messages have been
lost.

Figure 3.3: State transitions for the request/reply protocol, version 2. Channels

not described are empty and transitions labelled “loss” represent message losses.

Process p from Figure 3.2 retransmits the rqst message when one is lost. At
State 4, both ch.p.q and ch.q.p are empty and no actions are enabled. The time
variable for the rsnd timeout action is reduced to zero and the timeout action
is executed, resending the rqst message and returning the protocol to State 2.
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Since a message could be lost again, it also re-executes the activation statement,
resetting the time variable. In this execution in the abstract model, the specific
value of the time variable for the rsnd timeout action, 1000, is not used; since
it is the only time variable in the protocol, time passes in the abstract model of
this protocol 1000 time unit jumps.

The slow request/reply protocol

Unfortunately, the request/reply protocol as described in Figure 3.2 violates the
spirit, if not the letter, of protocol quiescence as described on page 19. As seen
in Figure 3.3, the protocol overall never waits; as soon as a reply is received,
the next request is sent. This is unrealistic because a continuous stream of
requests, even if separated by replies, is not likely to be a worthwhile use of
network resources.

A more realistic protocol is one which waits a given time between receiving
a reply and sending the next request. This time is called the delay. Also, there
is a period of time called rtt; a message loss has occurred if the rply is not
received by process p within rtt time units of sending the rqst. Furthermore, for
the moment we assume that rtt should be less than delay.

Figure 3.4 shows a modified version of process p of the request/reply that

operates in this more realistic manner. Process q is unchanged from previous
examples. An initial action activates the query timeout, sending the first rqst.
Thereafter, p sends a rqst message delay time units after receiving the previous
rply. If the rqst or rply is lost, the rsnd timeout action retransmits the rqst.

Figure 3.5 shows the state transition diagram for the slow request/reply
protocol, assuming rtt < delay. The protocol begin execution in State 0. Nor-
mal execution proceeds from State 1 to State 2, by transmitting a rqst, then to
State 3, by transmitting a rply, then to State 4, by receiving the rply, and back to
State 1, by executing the rsnd timeout action. In the transition from State 4 to
State 1, both the time variables for the query timeout action and the rsnd time-
out action are non-null, but since rtt < delay, the retransmission will be checked
before the next query can be sent. In this transition, the execution of p.3 does
nothing, By the abstract timeout semantics, the time advanced between State 4
and State 2 (and hence the time taken in the normal loop of states) will be the
delay, however.
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Figure 3.4: The slow request/reply protocol.

In the case that a message is lost, the process enters State 5, where no
actions are enabled and the only non-null time variable is that for the rsnd

timeout action, which will retransmit the rqst. Note that in a single rqst/rply
exchange, the total time advanced between the previous rqst message and the
next one will be delay plus rtt times the number of lost messages.

If we change our requirements so that rtt > delay, Figure 3.6 shows the
state transition diagram of the protocol. The difference is the absence of State 4
between State 3 and State 1. The execution of action p.4, which receives the
rply message, activates the query timeout guard with a value of delay. Since
delay is less than rtt, action p.2 must be executed first, entering State 2.

Incidentally, in the case where rtt > delay, both the variable readyp and
the conditional in p.3 are redundant: readyp will always be true when p.2 is
executed and always be false when p.3 is executed. However, their presence
does make the protocol more general across the values of rtt and delay.

Finally, if we alter the requirements so that rtt = delay, Figure 3.7 shows
the state transition diagram. In this case, there is a race condition in State 4:
both p.2 and p.3 can be executed. However, the execution of p.3 returns the
protocol to State 1, while the execution of p.2 carries the protocol directly to
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Figure 3.5: State transitions for the slow request/reply protocol. In this figure,

rtt < delay. States marked with have non-null time variables and those marked

with have non-null time variables and no enabled actions. Time variables are

indicated by rsnd.tv, where rsnd is the identifier of the timeout action guard. Time

variables not described are null. Channels not described are empty. Transitions

labelled “loss” represent message losses. The variable initial is false in all states

except State 0.

State 2—p.2 resets the time variable for the rsnd timeout action.
As before, if generality across the values of rtt and delay is unimportant,

the protocol can be altered to use only a single timeout, as shown in Figure 3.8.
This timeout uses the value of readyp to determine whether to send a new
request (if readyp is true) or to resend the previous request (if readyp is false).
The resulting state transition diagram would resemble that in Figure 3.6.

Justification

The main goal of the abstract model is to provide a conceptually simple ab-
straction of the network protocol environment. The features of the abstract
model combine to satisfy this goal:

1. Global atomicity and immediate message propagation limit the number
of states that the model can be in, as well as the number of transitions
between states.
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Figure 3.6: State transitions for the slow request/reply protocol, where rtt >

delay. In State 1, either rsnd.tv = rtt or rsnd.tv is null, but since rtt > delay, both

cases behave the same—p. 2 must be executed next.

2.

3.

4.

The model of message faults abstracts the general faults that a protocol
may be subject to, retaining those that are realistically common.

The timeout behavior abstracts the passage of real time without refer-

ence to a clock. Again, this limits the number of states of the model.
The timeout behavior also provides a flexible mechanism for describing
protocols with time-based features.

Global fairness ensures progress in the protocol. If the correctness of
the protocol requires the execution of a specific action and that action
becomes enabled and is not subsequently disabled before it is executed,
then it is guaranteed to eventually be executed.

The behavior of the abstract model described in this section is unrealistic,
but is almost reasonable. Another execution model, much closer to reality, is
described later. The relationship between the abstract model and the concrete
model, and the requirements made on protocols by that relationship, is the
subject of the next two chapters.
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Figure 3.7: State transitions for the slow request/reply protocol, where rtt =

delay.

Figure 3.8: Modifications to the slow request/reply protocol, where delay = rtt.

This action replaces actions p.2 and p.3 in Figure 3.4. Also, actions p.1 and p.4

need to be modified to activate qryrsnd rather than query.
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Concrete Execution Model

Unlike the abstract execution model, the concrete execution model is designed

to closely resemble the execution environment of a network protocol, including
simultaneous events, delayed message propagation, clock-based timeouts, and
local fairness.

As in the abstract execution model, when a protocol begins execution, the
channels are empty and the values of the variables at the initial state of each

process are given in the process definition. The computation also proceeds in a
sequence of action executions.

Concrete protocol state

The state of a protocol in the concrete model has a more complex structure
than that of the protocol in the abstract model. In addition to variables, each
process has an execution pointer, which either indicates the next statement to
be executed in an action of the process or takes a null value when no action is
being executed by the process. Also, rather than consisting of a single queue,
the channel between each pair of processes p and q is divided into two queues,
an incoming queue of ch.p.q and an outgoing queue of ch.p.q. When a process p
sends a message m to process q, message m is placed at the tail of the incoming
queue of ch.p.q. Later, m is moved from the head of the incoming queue of
ch.p.q to the tail of the outgoing queue of ch.p.q. Finally, process q receives m,
removing it from the head of the outgoing queue.

Concrete protocol execution

The execution of the protocol is broken into events. Each event is one of:

1. An action choice. In this event, which is possible when a process has
a null execution pointer and an enabled local or receive action guard,
one enabled action of the process is nondeterministically chosen and the
execution pointer of the process is set to the first statement of that action.
If the chosen action has a receive guard, then this event also removes the
message specified by the guard from the head of the outgoing queue of
the channel.
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2.

3.

4.

5.

6.

7.

8.

9.

The execution of a skip statement.

The execution of an assignment statement.

The execution of a send statement. In this event, the message is inserted
into the incoming queue of the specified channel.

The execution of a timeout activation statement.

The execution of a conditional choice. This event is possible when the
execution pointer points to either a conditional statement or an iteration
statement. If the pointer points to a conditional statement, one branch
is nondeterministically chosen from the enabled branches and the exe-
cution pointer is set to the first statement of that branch. If no branch is
enabled, the execution pointer is set to the next statement in the action
being executed. If the execution pointer points to an iteration statement
and the iteration guard is true, the execution pointer is set to the first
statement of the iteration body. Otherwise, the execution pointer is set
to the next statement in the action being executed or to null, if the condi-
tional is the final statement of the action.

A fault occurance.

A message transmission. In this event, a message is moved from the head
of the incoming queue of a channel to the tail of the outgoing queue of
the same channel.

A timer advance. Timeout behavior in the concrete model is described on
page 46. However, the timer advance event possibly sets the execution
pointer of one or more processes to the first statement of an action with a
timeout guard; in this case, it also sets the time variable associated with
the action to null.

Events 1 -6 are executed in some process in TAP. Events 2, 3, 4 and 5 set the exe-
cution pointer of the process to the next statement in the action being executed.
When one of these events is the final statement of an action, the execution
pointer is set to null.

A concrete computation of the protocol consists of a sequence of steps
moving the protocol from one state to the next, starting with the initial state
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of the protocol. A step in a concrete computation consists of one or more
simultaneous events such that, for any two events and occurring in the
same step, the following conditions hold:

1.

2.

3.

4.

Process execution. There are six types of events describing the execution
of actions in a process:

(a)

(b)

(c)

(d)

(e)

(f)

Choosing an action, Event 1.

Executing a skip, Event 2.

Executing an assignment, Event 3.

Sending a message, Event 4.

Activating a timeout, Event 5.

Evaluating a conditional choice, Event 6.

If is one of these events for some action in a process, then cannot
be one of these events for any action in the same process.

Action choice. If is an action choice event, Event 1, in some process,
then the execution pointer of that process at the concrete state immedi-
ately before the step is null.

Action execution. There are five types of events describing the execution
of statements of an action in a process:

(a)

(b)

(c)

(d)

(e)

Executing a skip, Event 2.

Executing an assignment, Event 3.

Sending a message, Event 4.

Activating a timeout, Event 5.

Evaluating a conditional choice, Event 6.

If is one of these events for some statement in an action in a process,
then the execution pointer of that process at the state immediately before
the step points to that statement.

Message operation. There are four types of events operating on a mes-
sage:
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(a)

(b)

(c)

(d)

Sending a message, Event 4.

Transmitting a message, Event 8.

Choosing an action which receives a message, Event 1.

A fault occurrence on a message, Event 7.

If is one of these events, cannot be one of these events operating on
the same message.

5.

6.

Message transmission. If is a message transmission event in some
channel, Event 8, then cannot be another message transmission event
in the same channel.

Timer advance. A timer advance event, Event 9, cannot occur in a step
with any other event.

The concrete execution model can be described as locally atomic, since the
actions within each process are executed atomically. However, different pro-
cesses execute in parallel, and many events can occur in the same step.

Delayed message propagation

The channels between processes are separated into two queues. When a mes-
sage is sent from process p to process q, the message enters the incoming queue
of channel ch.p.q, where it does not enable a receive action in process q even if
it is the first message in the channel. A separate event, a message transmission,
is needed to move the message from the incoming queue of ch.p.q to the outgo-
ing queue of the same channel. When a message is at the head of the outgoing
queue of ch.p.q, then the corresponding receive guard is enabled.

Concrete faults

The concrete model includes all of the faults listed on page 33: message loss,
message corruption, message reordering, and message duplication.

For simplicity, all faults in the concrete execution model occur when the
message suffering the fault is in the outgoing queue of the channel. (There is
no loss of generality in this requirement, since any fault in the incoming queue
before the message is transmitted is equivalent to the same fault in the outgoing
queue, after the message has been transmitted.)
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Concrete timeout behavior

The concrete execution model includes the timeout activation statement and the
timeout guard as described on page 34, with the activation statement behaving
exactly as in the abstract execution model. However, the concrete model in-
cludes an event called a timer advance, Event 9, which is allowed whenever a
time variable is non-null at any state where the execution pointers of all pro-
cesses are null. Each timer advance reduces the values of all non-null time
variables by one; if any time variable becomes zero, then the timer advance re-
sets the time variable to null and sets the execution pointer of the process with
the associated timeout action to the first statement of the timeout action.

Local fairness

In the concrete execution model, execution is locally fair: In a computation
consisting of an infinite number of states,

1.

2.

If an action in a given process becomes enabled, eventually either that
process will execute the action or the action will be disabled.

A message in the incoming queue of a channel will eventually be trans-
mitted to the outgoing queue.

This condition differs from the global fairness condition in that it only describes
the execution within a single process, not throughout the network protocol.

Concrete execution of the request/reply protocol

The flavor of the execution of the request/reply protocol can be found in the
sequence of steps in Figure 3.9. Each line horizontally represents a step; the
left column shows events in the execution of process p and the right column
shows events in the execution of process q. Each event in the figure is followed
by the identifying number of the event in parentheses. The first four steps show
the execution of the action from process p guarded by readyp. The next three
steps show two timer advances and the transmission of the request message in
ch.q.p. The next two steps show the execution of the action of process q. The
next step shows the transmission of the reply message in ch.q.p. The final two
steps show the execution of the receive action of process p.



Execution Models of Network Protocols 47

Figure 3.9: Computation steps for request/reply protocol. Each line horizontally

represents a step; the left column shows events in the execution of process p and

the right column shows events in the execution of process q.

Justification

The concrete execution model is designed to represent the normal execution
environment of an asynchronous, message passing network protocol. It does
so in the following ways:

Local atomicity models the execution of a group of processes: each pro-
cess serially executes its actions, but multiple processes execute in par-
allel.

The channels between processes can take an arbitrary time to deliver a
message, even with no faults.

Local fairness allows a computation to delay an action with a enabled
local predicate indefinitely by executing other enabled actions. On the
other hand, message and timeouts are acted on fairly.

Clearly, the concrete execution model differs from the abstract execution
model. However, the two execution models can be shown to be equivalent for
a rich class of protocols. This equivalence is discussed in the next chapter.



Chapter 4

EQUIVALENCE OF EXECUTION MODELS

The relationship between the abstract and concrete models is one of implemen-
tation: the abstract model of a protocol P in TAP represents the specification
of P whereas the concrete model of P represents its implementation.

This relationship is complex. On the one hand, they share the same notation
and fundamental operations, but on the other, they have different operational
assumptions. Fortunately, the two models are equivalent for a large class of
protocol computations. In other words, it is possible to demonstrate that a
protocol that behaves correctly in the abstract model will also behave correctly
in the concrete model, and vice versa.

In order to demonstrate the equivalence of the abstract execution model
from page 32 and the concrete execution model from page 42, a number of

terms and relationships first need to be defined.

Protocol states

The state of a protocol in a model describes all of the useful information about
the protocol at a point in its computation, specifically determining the next
transitions that are possible.

An abstract state of a protocol in the abstract execution model is:

The values of all variables in all processes in the protocol, and

The contents of all channels between processes in the protocol.

A concrete state of a protocol in the concrete execution model is:

The values of all variables in all processes in the protocol,

The values of the execution pointers of all processes in the protocol, and
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The contents of all incoming and outgoing queues of channels between
processes in the protocol.

For convenience, we adopt the notation that abstract states are named as,
at, and so on, whereas concrete states are named cs, ct, and so on. When
discussing corresponding states, a hub state cs corresponds to an abstract state
as, a hub state ct corresponds to an abstract state at, and so on.

In the concrete execution model, the extent of an event consists of the vari-
ables, execution pointers, and messages in the concrete states before and after
the step with the event. Specifically,

1.

2.

3.

4.

5.

6.

7.

8.

The extent of an action choice event, Event 1, consists of the variables
and execution pointer of the process executing the event, and the mes-
sages at the head of the outgoing queues of the channels terminating with
the process.

The extent of a skip event, Event 2, consists of the execution pointer of
the process executing the event.

The extent of an assignment event, Event 3, consists of the variables and
execution pointer of the process executing the event.

The extent of a send event, Event 4, consists of the execution pointer of
the process executing the send statement and the message being inserted
into the incoming queue of a channel.

The extent of a timeout activation event, Event 5, consists of the exe-
cution pointer of the process executing the activation statement and the
time variable associated with the timeout guard being activated.

The extent of a conditional choice event, Event 6, consists of the vari-
ables and execution pointer of the process executing the event.

The extent of a fault occurrence, Event 7, consists of the message or
messages altered or destroyed by the event.

The extent of a message transmission, Event 8, is the message being
transmitted.
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9. The extent of a timer advance event, Event 9, consists of all of the exist-
ing time variables and the execution pointers of the processes containing
those time variables.

Further, two events in the concrete execution model are independent if and
only if the extents of the two events do not overlap, in which case the events
do not observe or modify the same variables, time variables, process execution

pointers, or messages.

Equivalent protocol states

A concrete state is a hub state if and only if:

The values of the execution pointers of all processes in the state are null.

The incoming queue of each channel in the state is empty.

Informally, every hub state corresponds to some abstract state. At a hub state
in a computation of some protocol, the next event in the execution of every
process will be to begin an action, and since every message in a channel is in
the outgoing queue of the channel, the actions that are enabled are the same as
in the corresponding abstract state.

An abstract state, as, and a corresponding concrete state, cs, of the same
protocol are equivalent if and only if the following conditions hold:

cs is a hub state.

The values of the variables in as are equal to the values of the variables
in cs.

The sequence of messages in the outgoing queue of each channel in cs
is identical to the sequence of messages in the corresponding channel in
as.

Every abstract state is equivalent to some hub state, but not every concrete
state is equivalent to an abstract state; in particular, the non-hub states are not
equivalent to any abstract state.
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State transitions

An abstract transition is a pair of abstract states, as and at, such that there is an
action or error enabled at as and the execution of this action or the occurrence
of this error leads to at.

A concrete transition is a pair of concrete states, cs and ct, such that there is
a step consisting of one or more events each allowed at cs and the simultaneous
execution of the step leads to ct.

Computations

An abstract computation of a protocol is a possibly infinite sequence of abstract
states of the protocol beginning with the initial state of the protocol, such that
every pair of successive states is an abstract transition.

A concrete computation of a protocol is a possibly infinite sequence of
concrete states of the protocol beginning with the initial state of the protocol,
such that every pair of successive states is a concrete transition.

Whole computations

It is possible to have a concrete computation that cannot be related to an abstract
computation simply because, at every state of the concrete computation, some
action is always in the process of being executed; in other words, an execution
pointer of at least one process is non-null at each state of the concrete computa-
tion. In such a computation, there are no hub states after the initial state. Also,
since timer advance events are allowed in any concrete state where all of the
execution pointers are null, it is possible to have a concrete computation where
timeouts happen too fast: where every time variable is reduced to zero imme-
diately after it is created and the associated timeout action is executed before it
would be in the abstract model.

However, a class of finite concrete computations, called whole computa-
tions, can be defined so that any concrete computation in this class can be re-
lated to a finite abstract computation. A whole computation is a finite concrete
computation in which:



Equivalence of Execution Models 53

1.

2.

The final state of the concrete computation is a hub state.

Only hub states with no enabled action guards are the initial states of
transitions with timer advance events.

While both of these requirements are chosen for technical reasons, they do
have intuitional justifications. For the first requirement, a final hub state for

any finite concrete computation can be identified by appending the remaining
events from the incomplete action executions as well as the message trans-
mission events for the messages in the incoming queue of any channel. For
the second requirement, if the amount of time described by a timer advance
is greater than the duration of the execution of an action, it is reasonable to
assume that the processes execute each enabled action without delays. As a
result, the protocol spends most of its running time waiting.

Equivalent computations

Let P be a protocol specified in TAP, be a finite abstract computation of P,
and be a whole concrete computation of P.

The two computations and are equivalent if and only if:

1.

2.

The final state of is equivalent to the final state of

The sequence of actions and faults executed in is the same as the
sequence of actions and faults executed in

Since actions in the concrete execution model are not atomic, for an ac-
tion to be executed in means that the events making up the execution
of the action are executed in sequence in

The two requirements indicate that equivalent computations end equiva-
lently, and in the process of execution behave equivalently.

Proof of equivalence

In order to demonstrate that the abstract execution model and the concrete exe-
cution model are equivalent, we will prove that the models satisfy the following
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two conditions for any protocol P specified in TAP that satisfies the conditions
we have described:

1.

2.

Implementation consistency: For any whole concrete computation
there exists an equivalent finite abstract computation

Implementation completeness: For any finite abstract computation
there exists an equivalent finite concrete computation (It will turn
out that is whole.)

Figure 4.1 presents a graphical representation of the two conditions. The set A
is made up of finite abstract computations of protocol P and the set C is made
up of whole concrete computations of P.

Figure 4.1: The execution model relationship. A is the set of finite abstract com-

putations of protocol P specified in TAP and C is the set of whole concrete com-

putations for P.

In the next section, we prove that the implementation consistency condition
holds, and in the following section we prove that the implementation complete-
ness condition holds.

Implementation consistency

In this section, we demonstrate that the implementation consistency condition
holds by transforming the whole concrete computation of a protocol P
specified in TAP into an equivalent concrete computation of P, which is
itself equivalent to an abstract computation of P. is constructed from

by serialization and reordering.
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Event serialization

The computation of a process P specified in TAP consists of a sequence
of transitions, where each transition is a step made up of one or more events.
The first transformation serializes each step of resulting in a computation
consisting of a sequence of transitions made up of single events. Fortunately,
this transformation is possible because simultaneous events in the concrete ex-
ecution model are independent.

Theorem 1 Any two events that occur in the same step of a concrete computa-
tion of a protocol are independent.

Proof

If is an event in the execution of an action, must not be an event in
the execution of an action from the same process by the process execu-
tion condition described on page 44, Rule 1. Since the execution model
does not allow shared variables, they cannot observe or modify the same
variables, time variables, or execution pointer.

If is an event operating on a message, cannot operate on the same
message, by the message operations condition, Rule 4.

If is a message transmission, cannot also be a transmission on the
same channel, by the message transmission condition, Rule 5.

Therefore, and cannot observe or modify the same variables, time vari-
ables, execution pointers, or messages, and and are independent.

Given that any two events in the same step are independent, a step consist-
ing of more than one event can be transformed into a sequence of steps.

Theorem 2 (Serialization) A step consisting of simultaneous events, where
can be converted to a sequence of two steps, the first consisting of one

event and the second consisting of events, such that if the original step
starts at state cs and yields state ct, and if the sequence starts at state cs, then
the sequence will also yield state ct. (See Figure 4.2.)

Let and be two events that occur in the same step of
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Figure 4.2: The serialization transformation.

Proof
Consider two transitions:

A concrete transition made up of a step consisting of events
beginning in cs and ending in ct, and

A sequence of two transitions beginning in cs, the first transition made
up of a step consisting of and ending in and the second transition
beginning in and made up of a step consisting of and ending
in

By Theorem 1, must be independent of all of Therefore, all of
the extents of remain unchanged from cs to in the sequence and
the extent of remains unchanged from to in the sequence by
Therefore, is equivalent to ct.

Let be the concrete computation constructed by repeatedly serializing
the transitions in such that all transitions in consist of steps of a single
event.

1.

2.

3.

Since the serialization transformation only introduces states, all of the
states in occur in in order, although they may be separated by
intermediate states.

All of the events in occur in and those events which are not
simultaneous in occur in the same order.

For all of the events in any transition of the extent of the event is
equal to the extent of the same event in
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For the remainder of this chapter, we consider only this serialized compu-
tation

Event reordering

The serialized concrete computation consists of a sequence of transitions
made up of single-event steps, where the events from the execution of an action
in one process can be interleaved with the events from the execution of actions
from other processes and with faults. The second transformation reorders the
steps of to produce an equivalent computation which is itself equivalent to
an abstract computation.

A serialized concrete computation is uninterrupted if the following condi-
tions hold:

1.

2.

3.

Abstract action atomicity. All steps with events in the execution of an
action (Events 1, 2, 3, 4, 5, and 6) are not separated by any steps with
events from the execution of any other action, faults (Event 7), or timer
advances (Event 9).

Abstract message transmission. Every event sending a message
(Event 4) is immediately followed by the message transmission event
(Event 8) for that message.

Abstract timer advance. The timer advance event reducing a time vari-
able to zero occurs only in a hub state where all other actions are dis-
abled.

The goal of reordering is to construct an uninterrupted concrete computa-
tion from a serialized concrete computation

In order to transform the serialized computation into an uninterrupted
computation the initial event in each action execution is held fixed in the
sequence and the remaining events in the execution of every action are moved
left to be sequential with the preceding events in the execution of the action.

Theorem 3 (Reordering) A sequence of two concrete transitions, each con-
sisting of a single event where the two events are independent, can be reordered
such that if the original sequence starts at state cs and yields state cu, and if
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Figure 4.3: The reordering transformation.

the new sequence starts at state cs, then the new sequence will also yield cu.
(See Figure 4.3.)

Proof
Let be the event making up a transition beginning in cs and yielding ct, and

be an event making up the transition beginning in ct and yielding cu. If
is independent of then the extent of is unchanged by from cs to ct,
and therefore it is possible to create a transition made up of from cs to a new
state Since is independent of the extent of remains unchanged
from cs to and therefore it is possible to create a second transition made up
of from to a new state However, the extent of remains unchanged
from to and therefore, is equivalent to cu.

The new sequence from cs to cu replaces the original sequence in the com-
putation. In order to use the reordering theorem, the events which are indepen-
dent must be identified.

Theorem 4 Events in an execution of an action (2, 3, 4, 5, and 6) are indepen-
dent of:

1.

2.

3.

Prior events in the computation which are part of the execution of actions
in other processes.

Message transmission events unless the first event sends the message
which is transmitted.

Fault events unless the first event sends the message which suffers the
fault.



Equivalence of Execution Models 59

Proof
Let be one of Events 2, 3, 4, 5, or 6 of an execution of an action in process

1. Let be one of Events 1,2,3, 4, 5, or 6 of an execution of an action in
process where The extent of includes only variables of  the
execution pointer of and time variables for actions of and messages
in the incoming queue of channels originating at Likewise, the extent
of includes only variables of the execution pointer of and time

variables for actions of and message in the incoming queue of channels
originating at or in the outgoing queue of channels terminating at
Since these extents do not overlap, and are independent.

2. Let be a message transmission event (Event 8) for a message

If is not a send event, then its extent does not include a message.
Therefore, and are independent.

If is a send event for a message and then since
and do not operate on the same message, and are indepen-
dent.

As a result, and are independent.

3. Let be a fault event (Event 7) on a message By reasoning similar
to the case above, and are independent.

Theorem 4 enables the construction of a concrete computation that follows
the abstract action atomicity condition from

Theorem 5 A serialized concrete computation containing a transition made
up of an event from the execution of an action following another transition
made up of an event from the same execution of the action can be reordered so
that the second event immediately follows the first.

Proof

of an action, where follows
Let and be concrete transitions in that are part of a single execution
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is one of Events 1, 2, 3, 4, 5, or 6.

is one of Events 2, 3, 4, 5, or 6.

If and are separated by other events, each of these intervening events must
be one of:

1.

2.

Events 1, 2, 3, 4, 5, or 6 in the execution of other processes. However,
can be reordered with such an event, because by Theorem 4, the events
are independent.

Fault events (7) or message transmission events (8) that do not involve
messages also involved in the transition being reordered. Again, by The-
orem 4, can be reordered with such an event, since even if sends a
message, it cannot be the one transmitted.

The intervening event cannot be a timer advance event (9), since timer advance
events are assumed to only occur in hub states and there is no hub state between

and Therefore, the computation can be reordered to make and
immediately sequential.

In order to achieve the abstract message transmission condition, we must
demonstrate that reordering to follow the abstract message transmission
condition is possible.

Theorem 6 A serialized concrete computation can be reordered so that a tran-
sition with a message transmission event immediately follows the transition
with the event sending the message, as long as send or message transmission
events involving messages in the same channel.

Proof
As described on page 45, any fault events involving a message only occur

after the message is transmitted from the incoming queue of the channel to
the outgoing queue. Likewise, the action choice event removing the message
from the channel occurs after the message is transmitted. Therefore, a message
transmission must be independent of any intervening events between the event
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sending the message and the transmission event. By Theorem 3, the transi-
tion with the transmission event can be reordered with any such intervening
transition.

Following Theorem 5 and Theorem 6, it becomes possible to construct the
uninterrupted concrete computation.

Theorem 7 A serialized concrete computation can be converted into an
uninterrupted concrete computation.

Proof
The uninterrupted computation can be constructed by first noting that the first
transition in the computation is an action choice event, the first event in the
execution of an action, and then following the algorithm:

1.

2.

3.

Reorder the computation so that the current action follows the abstract
action atomicity condition. (Theorem 5.)

If the current action sends any messages, reorder the computation so
that this action follows the abstract message transmission condition. The
reordering must be done for each message sent by the action in the order
that the messages are sent, to preserve the order of the messages in the
channel. (Theorem 6.)

The state following the current action is a hub state. If there are no further
transitions in the computation, the uninterrupted computation has been
completed. If there are further transitions, the next transition from this
hub state is one of the following:

A timer advance not setting the execution pointer of any process, or
a fault event. In this case, the next state is also a hub state; continue
with step 3 while examining the next transition.

A timer advance setting the execution pointer of one or more pro-
cesses. In this case, reorder the computation so that each action
execution initiated by the timer advance follows the abstract atom-
icity and abstract message transmission conditions. Then, continue
with step 3 following the final transition in the last of the actions.
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An action choice event. In this case, continue with step 1.

Because the reorderings described by Theorem 5 and Theorem 6 do not al-
ter hub states, timer advance events are not involved in these reorderings. As
a result, timer advance events remain unaltered in the new computation and
because the original computation was whole, it therefore satisfies the abstract
timer advance condition.

The algorithm terminates, because it traverses the computation from be-
ginning to end, and when it does, the reordered computation is uninterrupted.

The uninterrupted computation constructed by the steps above is equiv-
alent to an abstract computation.

Theorem 8 (Implementation consistency) For any whole concrete computa-
tion of a protocol specified in TAP, there exists an equivalent finite abstract
computation of the protocol.

Proof
Let be a concrete computation of a protocol P specified in TAP and

be an uninterrupted computation produced from by the steps above. is
equivalent to some finite abstract computation because:

The final state of is a hub state, which is preserved in This state
is equivalent to the final state of

An uninterrupted computation consists of a sequence of:

Serial events representing the execution of an action followed by a
hub state.

Fault transitions, followed by a hub state.

Timer advance events, followed by either a hub state or the exe-
cution of an action. The timer advance events obey the same con-
ditions as the abstract timeout semantics; specifically, that actions
with timeout guards only become enabled when no other guard is
enabled and that all timeout actions with enabled guards are exe-
cuted before any non-timeout action which may become enabled.
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As a result, the sequence of actions and faults executed in are the
same as that in

Implementation completeness

As described previously, implementation completeness means that, for any fi-
nite abstract computation of a protocol P, there exists an equivalent finite con-
crete computation. The concrete computation is constructed using the abstract
computation as a model.

Theorem 9 For any finite abstract computation of a protocol specified in TAP,
there exists an equivalent finite concrete computation of the protocol.

Proof
Let be a finite abstract computation of a protocol P specified in TAP.

Construct from by doing the following:

1.

2.

3.

4.

5.

Begin with a sequence of concrete hub states, where each hub state in
the sequence is equivalent to the corresponding abstract state in

Between each pair of hub states corresponding to an action execution
abstract transition, insert a sequence of concrete transitions consisting of
single events corresponding to the execution of the action.

Immediately following each send event, insert a message transmission
event for the message.

Insert a concrete transition consisting of an error event between each pair
of hub states corresponding to an abstract fault.

Immediately prior to the execution of an event choosing a timeout action,
insert a number of steps consisting of timer advance events equal to the
value of the time variable associated with the action.

The resulting is equivalent to since
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By the first step, the final state of is equivalent to the final state of

By the second and fourth steps, the sequence of action executions and
faults in is the same as the sequence in

Also, the resulting is a valid concrete computation of P, since every pair of
successive states is a concrete transition—the second and fourth steps fill the
transitions between all of the hub states and the third and fifth steps ensure that
the correct actions are enabled at the next hub state.

Related work

The proofs in this chapter (and the next) have antecedents, especially in con-
sidering the atomicity of distributed systems.

Sivilotti[47] describes a set of conditions under which sections of code
can be considered atomic without explicit care to ensure their atomicity, sim-
plifying reasoning about distributed systems. Conveniently, message passing
systems such as those described here in the concrete model satisfy those con-
ditions as long as a message can experience only a finite delay. As will be seen
in the next chapter, the fairness condition of the concrete model ensures this
property.

Lipton[48] proved a theorem concerning combining atomic operations to
demonstrate partial correctness and deadlock-freedom properties, using com-
mutivity relations between atomic actions in a manner that appears to be similar
to that of this chapter.

Lamport and Schneider[49] and Lamport[50] also discuss the demonstra-
tion of safety properties for a program if the properties hold for a coarser-
grained but otherwise similar program. However, the relationship between
Lamport’s work and the two models described here is clearer in the latter. In
that paper, Lamport characterizes the relationship between a distributed algo-
rithm (analogous to a protocol executed in the concrete model) and a re-
duced version of the same algorithm, (analogous to a protocol executed in
the abstract model), in which “an entire operation is a single atomic action and
message transmission is instantaneous.” The conditions Lamport gives for this
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reduction to hold are satisfied by the abstract and concrete models, along with
the protocol style assumptions in Chapter 2.

By satisfying the conditions of the previous work, any results due to those
theorems apply to the relationship between the abstract and concrete models. In
fact, the proofs in this chapter and the next could be considered to be corollaries
of the previous theorems, although corollaries limited to the TAP asynchronous
message-passing system. However, the proofs in this chapter and the next go

further by asserting an equivalence between the two models. This equivalence
is not limited to properties relying on atomicity, and relates the models in both
directions.



Chapter 5

PRESERVING FAIRNESS

The previous chapter dealt with the equivalence of the two models of execution
based on finite computations. This equivalence indicates that the two models
are strongly related. However, one aspect of the two models that was not dealt
with by the previous chapter is fairness, since fairness does not apply to finite
computations. This chapter describes the relationship between global and local
fairness for infinite computations.

Because in both models fairness is described in terms of action executions,
this chapter will deal with a simplified version of the concrete model which
is identical to the abstract model except for the local fairness condition. As
a result, all states described are abstract states, and the events of the concrete
model are not mentioned. Also, since the abstract model does not feature de-
layed message propagation, local fairness is projected into the abstract model
by removing the condition requiring eventual message transmission. Similar
arguments can be made in the concrete model by constructing a projection of
global fairness, but the proofs would be more complex.

Global fairness

An infinite abstract computation is globally fair if, when an action in any pro-
cess becomes enabled in a state then the computation has a subsequent
state where that action is either disabled or executed.

Local fairness

An infinite abstract computation is locally fair if, when an action in process
is enabled in a state then the computation has a subsequent state
where that action is either disabled or executed.
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Global fairness differs from local fairness in that the former is property
of the global computation while the latter is a property of each process in a
computation.

Proof of fairness equivalence

The proof that global and local fairness are equivalent is presented in two steps:
first, that global fairness implies local fairness for abstract computations, and
second, that local fairness implies global fairness for abstract computations.

Theorem 10 Any globally fair abstract computation is locally fair.

Proof
Let be a globally fair abstract computation of protocol P specified in TAP,
be a process in P, and be an action of that is enabled in state of

By global fairness, there is a state where is disabled or executed.
In either case, satisfies the conditions for local fairness.

Theorem 11 Any locally fair abstract computation is globally fair.

Proof
Let be a locally fair computation of protocol P specified in TAP, be a

process in P, and be an action of that is enabled in state of By
local fairness, there is a state where is disabled or executed.
Therefore, satisfies the conditions for global fairness.

Fairness and the Austin Protocol Compiler

As described previously, local fairness is a property of each process in a com-
putation. As a result, assuming the statements in each action of the process
are well behaved as described in Chapter 2, it is possible for the compiler and
runtime environment to ensure local fairness for individual processes while a
guarantee of global fairness would be impractical. Specifically, as long as each
action execution terminates, the APC system will ensure that an action which
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becomes enabled will not be ignored forever; it will eventually either be exe-
cuted or become disabled.

Early versions of the Austin Protocol Compiler did not make this guarantee,
as they used a different algorithm for choosing actions to attempt to execute.
The necessity of the guarantee did not become clear until attempting to create
the proofs in this chapter—the original proofs were more complex and made
significant requirements of protocols in order to preserve fairness—and the im-
plementation of the guarantee required changes in the compiler and the runtime
system. It is interesting to note that the subsequent algorithm for choosing ac-
tions is much simpler than the original; the changes brought on to improve the
fairness qualities also improved the implementation.

A similar situation also occurred regarding the timeout semantics described
in Chapter 3. The early versions of the APC system allowed multiple time
variables for each timeout action. The proofs in the previous chapter, as well as
the realization that the current approach made many protocols simpler, brought
on a change to a single time variable per timeout action, and the implementation
of that change improved the compiler and runtime system.

The next chapter contains a detailed examination of the current APC sys-
tem.



Chapter 6

THE AUSTIN PROTOCOL COMPILER

The final piece of the protocol development puzzle is the Austin Protocol Com-
piler, or APC, which can transform a process described in TAP into executable
code in C. In use, the philosophy behind APC is similar to that of yacc—to
provide a simple, flexible interface to complex underlying techniques. Within
this philosophy, a protocol specification is written in TAP, based on the abstract
execution model. APC then translates that specification into an executable sys-
tem, based on the concrete execution model.

The most important requirement for APC is to correctly implement the con-
crete execution model of the TAP notation. Some parts of this requirement are
necessarily assumptions made about the execution environment and others are
implemented by the systems on which APC is based, but the major component
of the requirement must be dealt with by the APC implementation. Addition-
ally, there are two further goals for APC:

Integration with the C systems programming language. TAP, the lan-
guage provided by APC, is necessarily simple and by design does not
contain many features necessary to a general-purpose programming lan-
guage. Rather than extending this language, APC provides for protocols
to call arbitrary C functions, allowing file input/output, cryptography,
database and buffer management, and other tasks to be handled in the
manner best suited for each of them.

Simplicity of implementation. Before APC can meet any other goals,
its correct operation must be assured. By keeping the implementation
simple and the compiler’s output understandable, this assurance can be
validated.

APC generates portable C code as shown in Figure 6.1. The file containing
the TAP source is filename.ap, the file filename.c contains function definitions,
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Figure 6.1: The Austin Protocol Compiler

and the file filename.h contains the data structure definitions and function pro-
totypes.

The generated code is intended to be readable and uses meaningful identi-
fiers based on the original TAP source. This choice does have a disadvantage
in that the identifiers may conflict with those used elsewhere by the program-
mer, however it provides the advantage of allowing the generated code to be
compared with the original source.

Error handling in APC is currently somewhat primitive, with some errors
only identified by the C compiler. Fortunately, the readability of the generated
code and the structural similarity of the code to the original source make these
errors significantly easier to locate.

The APC runtime library is built on top of a base network protocol, which
provides services for sending and receiving messages. The base network pro-
tocol supported by the current version is UDP. In turn, the APC-generated code
interfaces with other systems for specific functionality within the control struc-
ture of the protocol.

The remainder of this chapter discusses the architecture of the Austin
Protocol Compiler, the programming interfaces provided by the compiler-

generated code and the runtime library, and the details of the runtime library
itself.

Architecture of the compiler

The compiler is implemented in approximately 1500 lines of Python plus a
500 line grammar specification using Flex and Bison and a 1000 line C/Python
interface between the parser and the Python code.1 The overall architecture of
the compiler is shown in Figure 6.2. The Python components of the compiler

This interface, made up of two components called FlexModule and BisonModule, is a sep-
arate, generic package.

1
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Figure 6.2: Architecture of APC.

are written in an object-oriented fashion, with the primary classes being nodes
of the abstract syntax tree. The AST is instantiated by the AST node generator
of Figure 6.2, called from the parser. The generic AST nodes, part of the
Generic AST in Figure 6.2, are instances of classes for tokens and symbols.
These instances provide access to the information from the parse tree such as
identifier names, numeric values, and sub-trees. The base module containing
the AST generator and the generic AST classes also provides the interface to
call the parser on a file, as well as syntax and other error handling.

A second module provides C code generation. This module consists of
subclasses of the generic AST node classes, shown as the C-specific AST in
Figure 6.2. These subclasses provide methods to the generate C code from
their corresponding elements of the abstract syntax of TAP.

The compiler design is simple, compact, and provides the ability to further
extend the C code generator or to replace it with other output generators.

The code generated by the compiler is made up of two major pieces: mes-
sage handling and TAP processes.

Message handling

In the generated C code, messages are represented by three components:

1. A data structure named after the message, describing the message’s fields
for use in the process’ actions. The data structure contains one record per
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2.

3.

field with the type of each record based on the type of the field: a bit-
sized, integer field results in a long integer record, and a byte-sized, data
field results in a unsigned character pointer record.

A function allowing an action to recognize and parse a message when
it is received. The message reader function converts integer fields from
network byte order to host byte order, checks that constant fields have

an appropriate value, and assigns to each character pointer record the
matching location in the incoming message. The reader function returns
true if the message being parsed is recognized, according to its size and
the value of constant fields, and false otherwise.

A function enabling an action to store the message an a buffer for trans-
mission. The message writer function converts integer records to net-
work byte order and copies their value as well as the data pointed to by
character pointer records to a temporary buffer for transmission.

The message definition notation is intended primarily to support the mes-
sage formats used by common Internet protocols, specifically the “box” dia-
grams common in IETF RFCs. Neither the message definition notation of TAP
nor the code generated is intended to handle every possible format for mes-
sages. For messages which cannot be handled in TAP, the message definition
can be declared “external” in the TAP source. In this case, the two functions are
not generated and must be provided by the programmer. By hand-generating
the two functions, messages that do not match the formats of the notation can
be accommodated.

TAP processes

A TAP process is also represented in the C code by three components:

1.

2.

3.

A pair of data structures, called the state data structure and the tag data
structure, with the state data structure containing the process’s state and
the tag data structure containing information describing the process;

A pair of initialization functions, the first setting up the state data struc-
ture and the second setting up the tag data structure of the process; and

A set of action functions, with one function per action in the process;
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Process data structures. The state data structure contains records for each
of the process’s constants and variables. The fields are referenced by the code
of the process’s actions. Fields in the structure are either unsigned integers,
abstract addresses, or arrays of one of those basic types.

The tag data structure has a generic prefix common to all processes, al-
lowing the protocol runtime system to interact with the process. The tag data

structure contains records holding:

A text string naming the process,

A reference to the state data structure for the process,

Lists of action function records for actions with local and receive guards,

A list of time variables used by timeout guards in the process, along with
the function implementing the action, and

A buffer for messages sent locally between processes executing within
the same runtime system,

Process initialization. Each process uses two initialization functions, one
for each of the two data structures. The first sets the records of the state data
structure with the initial value of the process’s variables and constants.

The second function sets up the tag data structure, including calling the
function to initialize the state data structure, setting up the local message buffer
and the records for the process’s action functions and time variables. Addition-
ally, this function prepares the information needed to assign values to abstract
addresses which are part of the process’s state. Finally, this function informs
the APC runtime system about the process.

As described previously, there is no way to specify a value for an address
variable or constant from within TAP, and the address variables and constants
are translated into state data structure records containing abstract addresses.
One way that a variable address acquires a value is when used in a receive
guard—the process of recognizing the message sets the variable to the address
of the message’s sender. On the other hand, it is necessary to identify a remote
process in order to begin to communicate with it. Many address variables or
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constants need to be initially assigned an address, either for the base network
protocol or for local communication. As part of the process structure initializa-

tion, the generated code registers with the runtime system the identifier used by
the process for each of its addresses as a text string. This identifier is associ-
ated with the location of the address constant or variable in the process’s state.
Since the variables and constants can be arrays, the identifier is additionally
associated with the dimensions of the variable or constant—a non-array sim-
ply has zero dimensions. This registration is used to identify the address when
it is assigned a value by external code, using functions provided by the APC
runtime system described on page 78.

Action functions. The actions of a process are translated to C functions. The
parameters of the functions depend on the type of the action guard, although all
action functions take the tag data structure of the process containing the action
as a parameter. Actions with local and timeout guards produce functions with
no other arguments while actions with receive guards produce functions that
also take a buffer containing the received message, the message’s size, and the
abstract address of the sender.

For local and receive guards, the action functions logically take the form
of a single C if statement. The translated guard of the action makes up the
condition of the statement, with local guards having a translated predicate, and
receive guards calling message parsing functions. The translated statements of
the action become the body of the if statement. Timeout guards do not have any
predicate associated with the guard and therefore the functions for such actions
do not have the overall conditional structure, but simply contain the translated
statements.

The integer returned value of the action function is used by the runtime
system to distinguish three possibilities:

A returned value of zero indicates that the guard of the action was false.
In this case, the statements of the action function have not executed and
the state of the process has not changed.

A returned value greater than zero indicates that the guard of the action
was true. In this case, the statements of the action function have executed
and the state of the process may have been changed.
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A returned value less than zero indicates that an unexpected error has
occurred. Such errors will terminate the runtime system.

The generated code is linked with a runtime system to produce the exe-
cutable protocol. The information provided by the compiler is used by the
runtime system to implement TAP’s concrete execution model.

APC runtime interfaces

Like yacc, the Austin Protocol Compiler generates a protocol implementation
that is invoked from an external program and that in turn invokes other external
functions. The interfaces between the external program and the protocol im-
plementation, and between the protocol implementation and external functions
are described by C functions and data structures. The next section describes the
interface between the external program and the protocol implementation, and
the following section describes the interface to code called from TAP state-
ments. Finally, the last section in this chapter describes the interface between
the runtime system and the functions recognizing incoming messages and and
buffering outgoing messages, as used by messages which are declared “exter-
nal.”

Initializing and executing the runtime system

Preparing to execute a TAP process is essentially a four step procedure:

1. The first step is to initialize the protocol engine, described on page 80,
and the base network protocol. The function used to do this with the
UDP base network protocol is:

This function accepts a UDP port number on which to listen for incoming
messages.

2. The second step is to initialize each process that will execute within the
protocol engine, using a function generated by the compiler:
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The will be replaced by the name of the TAP process. The pro-
cess_name argument provides a text identifier for the local message-
passing address of the process, allowing more than one instance of a
TAP process to be executed within a single protocol engine while allow-
ing another process to send messages locally to this instance. The state
and tag data structure definitionss are generated by the compiler, but in-
stances of each must be allocated by the code calling this function; the
handling of these two arguments is described on 75.

3. Since there is no way to initialize an address variable or constant in TAP,
the code invoking the protocol engine must do it, calling the following
function for each address variable or constant:

The process and the identifier arguments identify the address variable
or constant to be initialized; the identifier is the name of the address
variable or constant in the TAP process definition. If the actual address
is an element of an array, the identifier argument should also have an
array reference suffix describing the particular element to be initialized:
“addr[1]”, for example. The type argument indicates whether the address
is either:

A base network protocol address, in which case the address argu-
ment should be a string describing the address according to the
convention of the base network protocol interface. For UDP, this
is “hostname:port number”, the remote host name or IP address
followed by the remote UDP port number separated by a colon, or

A local address, in which case the address argument should match
the process_name of a local process, given in the process initializa-
tion function.
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4. The final step is to execute the protocol engine:

This function does not terminate unless the protocol engine reports an
error.

All of these functions may report errors via their returned values.

Invoking C functions from TAP

Because the protocol implementation generated by APC is embedded in C,
functions invoked by the protocol process’s statements are called as normal C
functions, with the following argument conventions:

Integer values are passed as C long integers, and

Data values, such as fields in messages, are passed as unsigned character
pointers.

Values may be passed as arguments to functions or may be returned by func-
tions, as described in the grammar on page 28.

Message functions

As described previously on page 74, messages may be declared to be external,
in which case the programmer must provide implementations of the functions
reading a newly received message and writing an outgoing message to a buffer.
The prototypes of these two functions, with m replaced by the name of the
message, are:

The dest and src arguments are pointers to the data structure describing the
message’s fields; this structure is always generated by the compiler and the type
of the structure is named after the message. The incoming, in_length, outgoing,
and out_length parameters describe the buffer containing the incoming message
or to which the outgoing message should be written.

read_m(unsigned char *incoming, int in_length, m *dest)

write_m(m *src, unsigned char *outgoing, int out_length)
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Architecture of the runtime system

The runtime system is divided into three components:

The abstract protocol engine and interface made up of approximately
1000 lines of C.

The core of the runtime system is the protocol engine, illustrated in
Figure 6. During the engine’s execution, it maintains the engine maintains
references to:

The processes that are running within the engine,

All of the local and receive action records, with pointers to the functions
implementing the actions and to the process containing each action, and

All of the time variables associated with each timeout-guarded action in
the processes running in the engine.

The protocol engine supports the execution of multiple local processes by
maintaining the references to the action records without regard to the process
containing the actions or time variables. For example, if multiple processes
are running within a single engine, when a base network protocol message is
received the receive action functions from all processes running in the engine
are allowed to try to parse it. The first action function which recognizes the
message executes the statements from its action, with the state for the process
supplied from the action record. After a message has been recognized and
handled, no further receive action functions are tried with the message.

The base network protocol interface, including sending and receiving
messages and managing address values. For the current version, the base
network protocol is limited to UDP and is made up of approximately
350 lines of C.

The local message passing interface, interacting with TAP processes in
the same way as the base network protocol although only transferring
messages between processes executing in the same runtime engine. This
interface is made up of approximately 250 lines of C.
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Figure 6.3: APC runtime architecture. Each process has pointers to its state

structure and to its own action records. The protocol engine has pointers to each

process and to lists of all of the action records.

Implementation of the concrete execution model

The protocol engine described previously is designed to ensure the guarantees
of the TAP concrete execution model. The algorithm used by the engine is
shown in Figure 6.4. This algorithm ensures the following conditions of proto-
col execution that satisfy the concrete execution model from page 42:

1.

2.

3.

The execution of the engine proceeds by invoking the functions imple-
menting the actions of each process serially. Each of the functions exe-
cutes atomically with respect to the other actions of the process contain-
ing it, ensuring that no two actions from the same process are executed
concurrently.

The action choice event of the concrete execution model is performed by
the protocol engine in steps 1,2,5, and 6, outside of the execution of any
action function. As a result, no action function can be executing when
another action is chosen for execution.

The compiler generates each action function to correctly implement the
statements of the body of the action, ensuring the proper execution of
each action.
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Figure 6.4: Algorithm of the APC protocol engine.

4.

5.

Because message transmission is decoupled from the execution of each
action function, by the base network protocol and by the local message
interface, no two operations on the same message can be simultaneous.

Each action function is assumed to execute quickly, relative to the dura-
tion of the timeout delay. As a result, the passage of time can be assumed
to occur in step 4, outside the execution of any action.

The assumptions concerning message delay and errors described on
pages 45 and 45 are based on the behavior of the base network protocol. The
UDP base protocol satisfies these conditions, and while the local message trans-
mission mechanism does not delay messages and should not suffer from faults
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in the same way as the base network protocol, its behavior does not contradict
the assumptions.

The concrete model’s timeout behavior described on page 46 is likewise
based on the behavior of implemented protocol actions—each action function
is assumed to execute quickly, relative to the duration of the timeout delay. As
a result, the passage of time is assumed to occur entirely in step 4, and the

choice of executing an action with a timeout guard can be assumed to occur in
step 6.

Finally, the overall algorithm of Figure 6.4 enforces the local fairness con-
ditions described on page 46—no action in a process can be prevented from ex-
ecuting indefinitely by the execution of other actions, since every action func-
tion is invoked before any one is invoked again.

The algorithm of Figure 6.4 is also the source of the requirement for proto-
col quiescence on page 19: if any local action becomes enabled, then it must be
executed or disabled before the process will wait again. The algorithm makes
it impossible for any process to wait when a local action is enabled.

The Austin Protocol Compiler and its runtime system implement the guar-
antees made by the concrete execution model, and the concrete execution
model is equivalent to the abstract execution model. As a result, the behav-
ior of an implemented protocol will be the same as the behavior expected from
the protocol in the abstract model.
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TWO EXAMPLES

In order to validate the Austin Protocol Compiler, we took two protocols de-
scribed elsewhere, re-specified them in TAP, and completed the framework
needed to create prototype implementations of them. These two protocols serve
as both a sanity check on the behavior of an implementation produced by APC
and as functional examples of relatively complex protocols built using APC.

The first protocol is the secret exchange protocol, which is intended to se-
curely change message integrity keys used between two network routers. This
protocol is the simpler of the two examples in this chapter and demonstrates
the basic functionality of APC. After describing the background of the secret
exchange protocol and presenting its TAP specification as well as the outside
code needed by it, two traces of its execution are presented, the first showing
the protocol executing normally and the second showing the behavior of the
protocol reacting to an attacking adversary.

The second protocol is the accelerated heartbeat protocol, which is used
to monitor the status of the processes involved in the protocol as well as the
network between the processes. This protocol is more complex since it dynam-
ically adjusts its timeout delays in response to message losses. After describing
its background and presenting its specification and code, three traces are pre-
sented, showing the protocol’s normal behavior, its response to a permanently
failed process, and its response to a temporary series of lost messages.

The secret exchange protocol

Current TCP/IP networks are vulnerable to a number of security problems.
One class of security problems that is particularly difficult to handle is called
a denial-of-service attack, whose aim is to exhaust the resources of a network
or of a host, so that normal services provided by the network or the host are
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reduced or denied. Two examples of denial-of-service attacks are:

“Smurf ” attacks[51], which use the ICMP Echo Request/Reply
messages[52] to attack a network host The attacker inserts an Echo
Request into the network with the source address forged to be the address
of and with a destination address set to a multicast address for every
host on the network. Every host on the network receiving such a request
sends an Echo Reply message to flooding the network and

SYN attacks[53], which attack the TCP connection protocol of a net-
work host Normally, a TCP connection is opened by a three-way
handshake: a host sending a message with the SYN flag set, after
which replies to with a message having the SYN and ACK flags set,
and completing the handshake with a message having an ACK flag set;
following the handshake, both hosts know that the connection has been
successfully created. When receives the SYN message, it must reserve
resources for the new connection, and these resources are the target of
the attack; if many SYN messages are received in a short time, will
run out of resources and be unable to open new connections until those

half-connections time out. In order to make the attack harder to defend
against, the attacker forges the source addresses of the SYN messages,
setting each to the address of a different host.

Denial-of-service attacks are difficult to defend against because there needs to
be no relationship between the attacker and the contents of the forged messages
constituting the attack. Other attacks, however, are possible using similar tech-
niques. In general, an attacker can insert forged messages, modify existing
messages, and replay old messages as part of an attack.

Hop integrity

In order to defend against these kinds of attacks, we introduced protocols to
provide hop integrity[54] for a network. A network provides hop integrity iff:

1Hosts should not respond to ICMP messages sent to multicast addresses, but historically
this condition has not always been implemented correctly.

1
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1.

2.

Whenever a router receives a message supposedly from an adjacent
router then can determine whether was modified by an attacker

after it was sent by and before it was received by

Whenever receives supposedly from then can determine whether
is a copy of an earlier message received by

Hop integrity can be provided by two protocols for transferring data mes-
sages between two routers: the weak integrity protocol and the strong integrity
protocol. The weak integrity protocol adds to each message a message digest
computed of the text of the message and a secret key shared between the two
routers, satisfying the first requirement of hop integrity. The strong integrity
protocol also adds sequence numbers (using “soft” state) to prevent message
replay and satisfy the second requirement of hop integrity.

An attacker attempting to modify a message between and will be de-
tected by the weak integrity protocol. An attacker attempting to replay a mes-
sage between and will be detected by the strong integrity protocol. Finally,
an attack made up of forged messages will also be detected, since

If a forged message appears to have traveled through it will not contain

the correct message digest, and

If forged messages appear to have come from a host on the subnetwork
between and traditional ingress filtering[55] will detect the forgery.

Implementation of the secret exchange protocol

Both the weak integrity protocol and the strong integrity protocol make use
of a secret key shared between the two routers executing the processes of the
protocols. By design, the secret key should be changed often. Generating
and exchanging the secret key is the function of the secret exchange protocol.
One process of the secret exchange protocol, pe, is executed by the router
and is shown in Figure 7.1, Figure 7.2 and Figure 7.3. The other process,
qe, is executed by and is defined symmetrically. Figure 7.4 defines the two
messages used by the secret exchange protocol.

The messages used by the protocol are a key change request and a key
change reply:
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Figure 7.1: The secret exchange protocol, part 1.

The rqst message contains a one byte field for the message type and an
8 byte data field containing two 32 bit keys. The first key in the field
is the current key used for sending messages to and the second is the
newly generated key.

The rply message contains a one byte type field and a single 32 bit data
field acknowledging the new key.

Process pe uses the following constants and variables:

The constant Rp is the long-term private key of pe and the constant Bq is
the long-term public key of qe. The long-term keys of each process are
inputs to the protocol, and should be set by the network administrator. In
the prototype described here, the values are arbitrary.

The constant te is the interval between secret key changes. This inter-
val should be relatively short, on the order of a few minutes. The con-
stant tr is the timeout for retransmitting key change requests. This time-
out should be an upper bound on the round-trip delay between the two
routers, on the order of a few seconds.

The constant qe is the address of the process qe.

The variable sp is the secret key currently used when sending messages
to qe.
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Figure 7.2: The secret exchange protocol, part 2.

The variable sq is an array containing the old and new secret keys used
when receiving messages from qe.

Finally, pe uses the following C functions for encryption, decryption, and
generating keys. Since the implementation discussed here is a prototype, sim-
ple encryption algorithms are used. These algorithms are not strong enough for
production use.

NEWSCR generates and returns a new secret key. NEWSCR uses the
rand() C library function; a production implementation should use a
more secure random number generator.

The variables d and e are two temporary values.

The variable initialize is a flag used to enable the action initializing the
process. This action, the first in process pe, is executed once when the

process begins and sets in motion the first key change.
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Figure 7.3: The secret exchange protocol, part 3.

Figure 7.4: Messages from the secret exchange protocol.

NCR accepts at least two arguments, and encrypts the subsequent count
unsigned long arguments with key, returning the resulting buffer. NCR
uses simple XOR encryption; a production implementation should use a
much stronger algorithm.

DCR decrypts the unsigned long value at offset of buffer using key. Like
NCR, DCR uses XOR encryption.
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Finally, log announces important messages; the current version prints the
message to the process’ standard output. Other options include logging
the message remotely, using syslog, for example.

These C functions are implemented in two separate modules each made up
of a source file and a header file. The TAP file containing the definition of pe

has include directives which bring the header files into the generated C code
for the process.

For pe to change its secret sq, four steps need to be performed. Each of
these four steps is represented by an action in pe and qe:

1.

2.

3.

4.

First, pe generates a new key, sq[1], and encrypts the concatenation of
the old key, sq[0], and the new key using qe’s long-term public key, Bq.
The resulting request message is sent to qe. This step is handled by the
sendrqst timeout action in Figure 7.2.

At all times, the secret key used for the integrity protocol message digest
for messages sent from to is sp. The secret key used for messages sent from

Second, when qe receives the request message, it decrypts the contents
using its long-term private key, Rq, and obtains the old key and new
key. Then qe checks that its current sq equals the old key from the re-
quest message, installs the new key as its current key, and sends a reply
message containing the encryption of the new key using pe’s long-term
public key Bp. This step is handled by the action guarded by “rcv rqst”
in Figure 7.2.

Third, pe waits until it receives a reply message from qe containing the
new key encrypted using Bp. This indicates that qe has accepted the
new key. This step is handled by the action guarded by “rcv rply” in
Figure 7.3.

If pe sends the request to qe but does not receive a reply for tr millisec-
onds, the request message or the reply message has been lost. In this
case, pe resends the request message to qe. This step is handled by the
resend timeout in Figure 7.3.
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Figure 7.5: C statements executing process pe. The program in this example

accepts two command line arguments. The first, argv[1], is the numeric UDP port

number on which process pe should listen for messages. The second, argv[2], is

the address of process qe, including the hostname and port number.

to is either sq[0] or sq[1]; sq[0] is normally used, but if the keys are in the
process of being changed, sq[1] may be necessary. The two integrity protocols
try the two keys in that order.

The definition for pe along with the definition of the rqst and rply messages
and the include directives for the C functions described previously make up the
source code of the protocol itself. Given the TAP source, the Austin Protocol

Compiler generates a C module, made up of a source file and a header file, con-
taining the translated code and data structures for the protocol. This module is
then combined with a program skeleton to create the executable implementa-
tion.

Figure 7 presents the program skeleton, the code used to set up and execute
pe from the C main() function. The first argument to the program, argv[1], is
the UDP port number on which pe should listen for incoming messages and the
second argument, argv[2], has the hostname and UDP port number of qe.

Since the reliability of the secret exchange protocol is paramount, it has
been verified[54], and the code generated by the compiler was compared with
the specification. As seen in Chapter 6, the Austin Protocol Compiler maintains
the guarantees necessary for the correctness of the protocol. As a result, the
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execution of the protocol matches the expected behavior of the specification,
avoiding the intrinsic problems of network protocol development.

Behavior of the secret exchange protocol

Figure 7.6: Compiling the key exchange process.

The C code for the process described in Figure 7.1, Figure 7.2, Figure 7.3
and the messages in Figure 7.4 was generated and linked with a main() function
described in Figure 7 and the logging and encryption functions described previ-
ously as well as the APC runtime library. The sequence of commands perform-
ing these steps is shown in Figure 7.6. The result was an executable file called
key-exchange, which was used to create the execution traces in Figure 7.7 and
Figure 7.8. In both traces, key-exchange was executed twice, as processes pe
and qe. Both processes executed on the same machine, to ensure that the trace
timestamps remained correct.

Figure 7.7 shows the beginning of an execution trace of the normal behavior
of the secret exchange protocol. Each line in the trace represents a single line
of output produced by the log function, with a timestamp of the event at the
left. Each request includes the old and new secrets, and each reply identifies
the new secrets being acknowledged.

Notice that requests to change secrets are generated approximately 20 sec-
onds after the last secret change, and that message retransmissions are sent
after approximately 1 second. Both of these delays are specified in Figure 7.1,
by the constant values of 20000 for te and 1000 for tr. The two constants are
used in activation statements in Figure 7.2 and Figure 7.3.
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Figure 7.7: Normal execution trace of the key exchange protocol.

Figure 7.8 shows a partial execution trace of pe under attack. The process
labelled “attacker” simulates an attacking host located between and This
attacking host does not know the long-term keys used between and and
is attempting to forge secret change requests and replies. In the two attacks
shown, the forgery was detected because the decrypted secrets did not match
what process pe was expecting.

While the correctness of the secret exchange protocol has been verified and
the implementation described here appears to function correctly, further work
is necessary. For example, experimentation with the implementation is needed
for the following extrinsic aspects of the secret exchange protocol:
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Figure 7.8: Execution trace of the key exchange protocol under attack.

The proper values for the timeout delays, te and tr, of the protocol.

The appropriate sizes for the encryption keys used by the protocol
and the appropriate encryption algorithms to use for NCR, DCR, and
NEWSCR.

These parameters depend on the security of the encryption algorithms as well
as their performance, particularly the message digest algorithm used by the
integrity protocols. The prototype of the secret exchange protocol created with
the Austin Protocol Compiler is a first step for these experiments.

The accelerated heartbeat protocol

A fundamental construct for tolerating faults in computer networks is a heart-
beat protocol. A heartbeat protocol allows processes in a network to period-
ically exchange beat messages. As long as a process keeps receiving beat
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messages from a process recognizes that and the communication medium
from to are both up. If does not receive any beat messages from for a
long time, recognizes that has terminated or failed or that the communica-
tion medium from to has failed. In this case, itself terminates. Therefore,
a heartbeat protocol ensures that if one or more processes in a program fail or
terminate, then every other process in the program terminates.

There are three contradictory objectives for a heartbeat protocol:

1.

2.

3.

In order to reduce the overhead of the protocol, as few beat messages as
possible should be sent.

It is possible to make a compromise between the objectives and construct
a heartbeat protocol which is configurable for different requirements and net-
work conditions. This protocol is called the accelerated heartbeat protocol[56].
It minimizes the protocol overhead while providing an acceptable tradeoff be-
tween detection delay and the probability of premature termination.

Consider the case where the network that has only two processes, and
The communication between and can be partitioned into succes-

sive time periods. In each period, sends a beat message to then waits
to receive back a beat message from The length of each period depends
on the events that occurred in the preceding period according to the following
three rules:

1. If in a period, sends a beat message to and receives a beat mes-
sage from then makes the length of the next period a large value
tmax (irrespective of the length of the current period). The value of tmax
is determined by the acceptable detection delay and by the probability of
premature termination.

In order to increase protocol responsiveness, the detection delay (which
is the longest period that can pass after one process terminates and before
the heartbeat protocol causes all processes to terminate) should be small.

In order to improve reliability, the probability of premature termination
(which is the probability that the heartbeat protocol causes all processes
to terminate due to the loss of beat messages and not due to the termi-
nation of a process or the permanent failure of the network) should be
small.
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2.

3.

If in a period, sends a beat message to but does not receive a
beat message from then makes the length of the next period
half that of the current period.

If the length of the next period ever becomes less than tmin, an upper
bound on the round trip delay for beat messages between and
then terminates and stops sending beat messages to

Rule 1 is adopted to ensure that when and and the communication
medium between them are all up (a typical situation), the rate of sending beat
messages is kept small. Rules 2 and 3 are adopted so that when suspects
a failure or termination, tries to refute this suspicion several times in a
short span before it finally accepts its suspicion and terminates. Thus, these
two rules ensure that both the detection delay and the probability of premature
termination are kept small.

From these three rules, if does not receive any beat message for a pe-
riod of 2tmax, then terminates. Moreover, if does not receive any beat
message for a period of 3tmax – tmin (and so it does not send any beat messages
for the same period), then recognizes that has already terminated and

itself terminates.

To understand the period 3tmax – tmin, consider the following scenario:

1.

2.

3.

4.

5.

sends and receives beat messages. The period is tmax.

The network fails; all further messages are lost.

After a period of tmax, sends a beat message.

After another period of tmax, has received no beat message. It sends
a beat message and makes the next period tmax/2.

continues to halve the period until it terminates.

The time between steps 1 and 3 is tmax, between steps 3 and 4 is tmax, and
between steps 4 and 5 is bounded by tmax – tmin. Thus, the period between
steps 1 and 5 is bounded by 3tmax – tmin.

The two-process heartbeat protocol can be extended to a protocol that in-
volves processes, to In this extended version of the accelerated
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heartbeat protocol, executes a acts as above, except that it commu-
nicates with every other process. The communication between and the
processes can be partitioned into periods. In each period, pro-
cess sends a beat message to every process and then waits to receive a
beat message from every process. When receives a beat message from
any records this fact.

At the end of each period, process computes the length of the next
period as follows: First, computes the length of the next period for each
process as described previously. Second, selects the smallest delay to
be the length of the next period.

The analysis of how values for the acceptable detection delay, the proba-
bility that a beat message will be lost by a single error, and the upper bound
on the round trip delay combine to set the values of tmax and the probability
of premature termination is described elsewhere[56] for both the two process
and process accelerated heartbeat protocol. The remainder of this section
discusses the implementation of a three-process accelerated heartbeat protocol.

Implementation of the accelerated heartbeat protocol

Figure 7.9: Message definition for the accelerated heartbeat protocol.

The beat message exchanged by the processes of the accelerated heartbeat
protocol is defined in Figure 7.9. In this message, the type field indicates a beat
message and the id field provides a number identifying the and to

The first process definition in the protocol, p0, is the “root” process. The
definition of p0 is shown in Figure 7.10 and Figure 7.11. The second process
definition, pn, is executed twice, as the child processes and The
definition of pn is shown in Figure 7.12.
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Figure 7.10: The accelerated heartbeat protocol, process part 1.

The definition of p0 in Figure 7.10 uses the following constants and vari-
ables:

The constant tmin is an upper bound on the round trip delay between the
process in the protocol, to be used as a lower bound on the timeout delay
for the heartbeat period. For this prototype implementation, this constant
is set to 1 second.

The constant tmax is the normal period for sending beat messages. The
detection delay for failures is 3tmax. For this implementation, it is set to
10 seconds.

The constant pn is an array containing the addresses of the child pro-
cesses. Since this array is constant, the values of these addresses must be
set by the program using APC_set_address before executing the protocol
engine.

The variable rcvd is an array of boolean values indicating whether a beat
message has been received from the corresponding child process in the
current round.
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Figure 7.11: The accelerated heartbeat protocol, process part 2.

The variable tm is an array containing the heartbeat period for the proto-

col between and the corresponding child process.

The first action of p0 in Figure 7.10, sends an initial beat message to the
children and sets up the delay for the first round. Each beat message contains
an id field which identifies the child process to which the message is sent.

The variable t is The minimum value from tm, to be used as the delay for
the next round. Initially, t is set to tmax.

The variables k and p are two temporary variables; k is used as an index
into the various arrays and p is used when receiving messages from a
child process.

The variable initialize guards the first action of the process; it is initially
true but set to false after the first action is executed.
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Figure 7.12: The accelerated heartbeat protocol, process and

The second action of p0 in Figure 7.11 computes the delay for the next
round according to the rules from page 96 and whether or not a beat message
has been received in the current round from each child. This action potentially
either:

Terminates the program, if t < tmin, or

Sends a new round of beat messages and activates the timeout for the
next round, if

The third action of p0 in Figure 7.11 simply receives a beat message from
a child and marks the element of the rcvd array based on the id field in the
message.

The definition of pn in Figure 7.12 uses only a single initialize variable, to
enable the initial action which sets the initial delay after which pn will execute
the third action. The second action of pn receives the beat message from p0,
returns it, and resets the delay for the third action. The third action, enabled
only when pn has not received a beat message in the 3tmax – tmin time period,
terminates the process.
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Behavior of the accelerated heartbeat protocol

The TAP processes described in Figure 7.10, Figure 7.11 and Figure 7.12 and
the message in Figure 7.9 were compiled and linked with driver programs, the
APC runtime library, and the logging function. The processes of the protocol
were executed on the same machine, in order to generate an accurate trace of
the activities of the processes. The behavior of the protocol when executed nor-
mally is demonstrated in the trace in Figure 7.13. In this trace, beat messages
are exchanged every tmax milliseconds.

Figure 7.13: Normal execution trace of  3-process accelerated heartbeat protocol.

More complex behavior from the accelerated heartbeat protocol is shown in
Figure 7.14. In this trace, was terminated after a few seconds of execution
and then restarted, allowing the heartbeat protocol to recover. Process was
down for approximately 13 seconds, missing two rounds.

Finally, Figure 7.15 shows the behavior of the accelerated heartbeat proto-
col when permanently fails after a few seconds of execution. As designed,

terminates within 3tmax milliseconds or 30 seconds, and terminates
within a further 3tmax milliseconds after the final beat message is sent.
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One use of the accelerated heartbeat protocol is in monitoring existing pro-
tocols which do not have flexible heartbeat mechanisms, as described in Gouda
and McGuire[57]. The system described in that paper uses a hand-coded ver-
sion of the accelerated heartbeat to monitor traffic over a TCP connection with
a minimal impact on the protocol using the TCP connection. An earlier TAP
specification of the accelerated heartbeat was integral in developing the hand-
coded implementation.
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Figure 7.14: Execution trace of accelerated heartbeat protocol with temporary failure of
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Figure 7.15: Execution trace of accelerated heartbeat protocol with permanent failure of



Chapter 8

A DNS SERVER

The Domain Name System[58, 59, 60], or DNS, is a distributed database
mapping hierarchical keys, or names, to extensible, generalized values, or re-
sources. The key features of the DNS are:

The database is distributed among a large number of independently ad-
ministered servers. This is a reliability and scaling feature as well as
an administrative feature: the resources are replicated through several
servers as well as being partitioned between groups of servers, avoiding
any single point of failure for the DNS as a whole. Also, the admin-
istrative domain responsible for a given part of the data typically has
authority over the servers for that part of the data.

The key space is organized heirarchically, in a tree structure proceed-
ing from an otherwise nameless root to top-level domains such as “edu,”
“com,” and the two-letter ISO country code domains, and thence to sec-
ond and lower-level domains such as “utexas” and “cs.utexas.” This hier-
archy roughly corresponds to the organizational and thus administrative
structure of the data. Each name is made up of a sequence of labels and
uniquely identifies a node in the hierarchy by beginning at the root and
choosing a child node identified by the next label in the name.

The values in the database are described by an extensible set of resource
records, with each kind of resource record containing information useful
for a different application. Each record is identified by a class, such
as IN, the Internet class; and a type such as A, which provides an IPv4
address for the name of the node, or MX, which identifies the name and
preference value for an Internet e-mail server for the name.
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DNS is primarily described in RFC1034[58] and RFC1035[59] although
extensions (particularly for security and internationalization) and new resource
records are described in a large number of further RFCs. For this chapter,
however, RFC 1034 and RFC 1035 are the only primary sources. In particular,
DNSSEC[61] is not covered.

According to RFC 1034, the DNS consists of three components:

1. The tree-structured domain name space and the resource records for data
associated with the names. The name space is administratively organized
into zones, each consisting of a subtree of the name space. The root of
each zone subtree is a node associated with a SOA (Start Of Authority)
resource record and each zone contains the descendent nodes down to,
but not including, any lower-level nodes with another SOA record. Since
the descendent zones may be contained in a different DNS server, the
parent zone needs to have enough information, called glue, for a client
to contact the server for the child zone.

2. The name servers. A name server is a program holding information about
the domain name space. Name servers perform two different, but related,
roles:

An authoritative name server contains complete information about
one or more zones, including all of the names in each zone, all of
the records for those names, and the glue needed by sub-zones. Au-
thoritative servers are divided into master servers and slave servers.
A master server contains, by definition, up to date authoritative in-
formation about a zone. A slave server, on the other hand, contains
authoritative information which may be out of date; slave servers
get their information about zones by means of a zone transfer from
the master server for the zone.

A caching name server contains incomplete information about any
number of zones. For performance reasons, not every request
for DNS information should result in a request to an authoritative
server; since multiple requests are frequently made for the same
information, requests from DNS clients may be satisfied from a lo-
cal, caching server. To support caching, every record in a response
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from a DNS server contains a time-to-live, or TTL, field describing
how long the record may be cached.

Some DNS server programs, such as the Berkeley Internet Name Do-
main, or BIND, are capable of performing both roles at the same time,
but such usage is deprecated. Most other DNS server packages separate
the two roles into two different programs and even BIND recommends
that the two roles be separated into two hosts.

3. Resolvers. A resolver is a program which extracts information from the
DNS for a client. A resolver is typically a library function such as geth-
ostbyname called by a client program.

The DNS network protocol is very simple, normally consisting of a request
and response. One complication is CNAME records, which provide aliases for
domain names and which the server must follow in generating the response.
Another complication is that a DNS query has four possible responses:

An authoritative response that the given name does not exist.

An authoritative response that, although the name exists, no record of the
requested type for the given name exists.

The resource record or records that were requested.

A pointer to a sub-zone, indicating that, while the server is not capable
of answering the query, a server for the indicated sub-zone may be able
to.

The final possibility results in two possible further behaviors for the server:

A server noting that it cannot answer a query may itself forward the query
to a server for the sub-zone. This behavior is called a recursive query,
and is the normal behavior for a caching server—it only responds to a
client with the final answer, which is one of the first three possibilities.

A server that cannot answer a query may respond with an indication that
it cannot do so. This response will include the glue information needed
by the requester to further track down the answer. This is the normal
behavior of a non-caching, authoritative server.
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The DNS network protocol for TCP/IP networks is capable of using two
transport protocols, TCP or UDP. Typically, TCP is used only for large mes-
sages that will not fit into a single UDP datagram. These large messages are
usually zone transfers; almost all other DNS requests and responses use UDP.

While performance is not a key requirement for the DNS system, it is a very
important attribute for a DNS server, since the DNS is an important part of the
Internet infrastructure, the databases needed for some zones are very large, and
many servers must respond to a large volume of requests.[62,63, 64, 65]

The remainder of this chapter presents an implementation of an authori-
tative DNS server process, called aserv, based around a protocol specification
given in TAP. The specifications and code for this implementation is available
as part of the apdns package from the Austin Protocol Compiler home page.

The authoritative DNS server

Figure 8.1: A DNS query message. The DNS response message, named “resp” in

the TAP definition, is the same except that the type field is a constant 1.

The TAP definition of a DNS query message is shown in Figure 8.1. The
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format of a response message is the same, except the type field is set to 1. These
messages consist of two parts: a header and a body. In the TAP definition, all
but the last field make up the header part. Header fields are used as follows:

The id field is a unique number identifying the request.

The opcode field indicates the type of the query, normally a standard
query. Other options include an inverse query and a server status request,
neither of which are addressed here.

The aa field is used in a response message, indicating that the server
responding is authoritative for the name in the query.

The tc field is used in a response messages to indicate that the response
is too large to fit in the message and has been truncated.

The rd field is set in the query message when the requester wants the
server to pursue the query recursively; a normal client might set this
while a caching server making a query might not.

The ra field is used in a response message to indicate whether or not
the server is willing to recursively pursue queries; an authoritative server
may not be.

The z field is reserved for future use and should be set to 0.

The rcode field is used in a response message to indicate the results of
the query as follows:

0

1

2

3

4

5

No error condition.

The name server was unable to interpret the query.

The name server was unable to process this query due to a problem
with the name server.

The domain name referenced in the query does not exist.

The name server does not support the requested kind of query.

The name server refuses to perform the specified operation for pol-
icy reasons.
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The remaining fields refer to sections in the message body and are discussed
later.

The body part of a DNS message, either a query or a response, is made up
of four sections:

A query section containing the request being made. The query consists
of a name, a type and a class. The number of entries in the query section
is given by the qdcount field in the header; it is normally one. For query
messages, the remaining sections of the body are empty. For response
messages, the query section is copied over and the remaining sections
contain the response information.

An answer section containing the resource records answering the query.
The ancount field of the header gives the number of records in the answer
section.

An authority section containing NS (name server) resource records.
Some servers add these records to describe the authority for any answer,
which aids caching for future requests. However, the contents of this
section are only needed when the server is not capable of answering the
query and is not willing to pursue it recursively. The NS records are part
of the glue telling the requester where to go next. The nscount field gives
the number of records in this section.

An additional information section. When the responding server cannot
answer the query and is returning glue information, it normally puts
address records into the additional information section. These address
records match the NS records in the authority section, and are also part
of the glue information telling the requester where to go next. The ar-
count field gives the number of records in this section.

Common parts of the body sections of a DNS message are names. Since
DNS messages may contain many names or many copies of the same name (as
part of multiple resource records, for example), the names use a compression
scheme. Each name is made up of one or more labels, and in a message each
label is represented by a length byte followed by the corresponding number of
bytes making up the label. However, since each label is limited to 64 bytes, the
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two high bits of the length must be zero. The compression scheme uses these
two bits differently: if instead the two high bits are one, the remaining six bits
of the length byte plus the next byte are taken as an offset in the message. The
label found at that offset, plus any following labels, are used as the remainder
of the current name.

Because the sizes and formats of the four body sections are variable, they
cannot be described in TAP. Instead, the body of the message must be parsed
by external C code during the processing of the message, as seen in Figure 8.3.

Figure 8.2: The authoritative DNS server process, part 1.

Figure 8.2 and Figure 8.3 present the authoritative DNS server process,
aserv. This process has a single action, which receives a DNS query mes-
sage. Upon receiving the query, the action begins building a response by copy-
ing fields from the query and setting the recursion available flag to zero and
the authoritative answer flag to one. Then it calls the C function parse_query.
The parse_query function checks the query for unsupported options such as a
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Figure 8.3: The authoritative DNS server process, part 2.

zone transfer request or multiple query records in the query section, converts
the query to an internal form, and begins to prepare a response message by
storing the query record in the query section of the response buffer. Finally,
parse_query returns a flag indicating whether the query message is valid or not.

If the query is invalid, the response’s rcode field is set appropriately and the

remainder of the response is copied from the query message.
If the query is valid, the action in aserv calls the C function query_database,

attempts to locate one or more records satisfying the query. Figure 8.4 presents
the algorithm used by the query_database function. The return value of the
query_database function determines the contents of the response message:

If query_response returns 0, records matching the query have been found
and must be copied into the response buffer, as well as setting the re-
maining fields of the header such as ancount.

If query_response returns 1, records representing glue information must
be copied into the response buffer. In this case, however, the response is
not authoritative.

If query_response returns 2 or 3, no further records need to be copied
since the rcode field contains the distinguishing information.

The buffer containing the stored records for the response is returned by the
response_body function.
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Figure 8.4: Algorithm for query_database.

Behind the parse_query and query_database functions lie almost all of the
complexity of the DNS server. This complexity comes from the difficulty in
parsing the query body, supporting the database, and generating the response
body. When managing this complexity, a key advantage of the Austin Pro-
tocol Compiler design becomes vital: Since the compiler generates C code,
any tools available to C programs are also available when implementing pro-
tocols. In this case, the DNS server implementation uses the Flex and Bi-
son parser generator tools and the Boehm-Demers-Weiser conservative garbage
collector[66,67]. Flex and Bison are used to parse the DNS database informa-
tion, from the RFC1035-formatted master files. The garbage collector provides
memory management for the database and for DNS message handling.
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The current implementation described here has a number of limitations. In
addition to not dealing with extensions to the basic DNS protocol, it also uses
a very simplistic database which limits the contents of the database to a single
zone, along with the glue needed for sub-zones. The database is also inefficient
for large domains. Also, no guarantees are made about the correctness of the
implementation—the specification is complex and not always clear and this
implementation has undergone only minimal interoperability testing.

Implementation performance

As mentioned previously, the performance of a DNS server is important. In
order to analyze the performance of protocols implemented with the Austin
Protocol Compiler, we compared the implementation of the DNS server de-
scribed in this chapter with two other commonly used server implementations.

The Berkeley Internet Name Domain[68], or BIND, software is de facto
standard DNS software implementation. It includes a name resolver library
and tools for querying and administering the DNS as well as a DNS server. The
BIND DNS server, named, is capable of acting as both an authoritative server
and a caching server although the Internet Systems Consortium, the produc-
ers of BIND, recommend administratively separating the two functions. The
named server also implements essentially every option for the DNS protocols,
including supporting TCP connections, zone transfers, and the DNSSEC secu-
rity extensions. Finally, the database of DNS information stored by the named
server is kept in the server’s memory.

D. J. Bernstein produces djbdns[69], another DNS software implementa-
tion. In contrast to BIND, djbdns divides server functionality between a num-
ber of programs, including an authoritative name server, tinydns, and a caching
name server, dnscache. An additional program, axfrdns, supports TCP con-
nections for zone transfers; tinydns, for example, only supports UDP queries.
The primary requirements for the djbdns software are correctness and secu-
rity; one result is that the database of DNS information is stored in the server’s
filesystem.

The server described in this chapter, aserv, shares some features with both
named and tinydns. Like named, it reads zone information from an RFC 1035-
formatted master file and keeps the database in memory; djbdns supplies an-
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other program which parses zone information from a configuration file in a
non-RFC1035 format and writes it to a binary database file used by tinydns.
On the other hand, aserv is designed to behave more like tinydns in not han-
dling zone transfers or a caching service.

We used BIND version 9.2.3, apdns version 0.9, and djbdns version 1.05
in these measurements. The client programs for each test are part of the apdns
package and use the Poslib[70] DNS library version 1.0.2. The default opti-
mization and code generation configurations were used for all packages.1

The server host is an AMD Athlon XP 2200+ running at 1800MHz with
512MB of memory, using Linux kernel version 2.6.0. The client host for the
remote measurements is a 1333MHz Intel Celeron with 256MB of memory,
using Linux kernel version 2.4.18. Both machines were in single user mode
during the measurements, with only required system processes running. The
two machines are connected via a 100Mb/s ethernet, with a measured through-
put (via nttcp[71 ]) of 7.2MB/S.

Since the quality of the database is not relevant to the protocol implemen-
tation, a small database containing only a few records was created for each
server. The master file used by BIND’s named and apdns’s aserv is shown in
Figure 8.5; an equivalent configuration was created for djbdns’s tinydns.

There are three components to a network protocol implementation’s tem-

poral performance:

1.

2.

3.

Latency, or the time a single request or transfer takes,

Throughput, or the number of requests (or the amount of data transferred)
that the implementation can handle in a unit time period, and

Overhead, or the processing time per request that the implementation
takes outside of that to directly satisfy the request.

1It is interesting to note that these measurements provide an extreme example of the compat-
ibility problems of network protocol development. The comparison is between three unrelated
implementations of the authoritative server process of the DNS protocol, made using an imple-
mentation of the client process that is itself unrelated to any of the servers. One of the servers,
named, implements essentially every enhancement and extension made since the original devel-
opment of the DNS protocol; another, tinydns, only implements a chosen, production-quality
subset of them; and the third, aserv, does not implement any and is not complete with regard to
the features of the original DNS specification. Yet in the end, all must work compatibly to make
the measurements.
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Figure 8.5: Master file used by the BIND and apdns servers.

These three components are clearly related; latency and throughput are approx-
imately inverses. The overhead, however, alters that basic relationship. For ex-
ample, it is possible to optimize for reduced latency by moving computations
that are needed by the protocol but unnecessary to a current request outside of
a “critical path” for the request. The result is an implementation with improved
latency but unchanged throughput (or perhaps worse throughput, if shifting
the overhead computation has costs). In any case, the three components are
separately important, since a protocol implementation should be capable of re-
sponding to a request quickly, be capable of responding to a large number of
requests, and avoid consuming resources needed elsewhere by the server.

Latency

The latency and throughput measurements were taken in two configurations:

A remote configuration with the DNS client processes executing on a
client host and the server executing on a server host and

A local configuration with the client and the server both executing on the
server host.
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Figure 8.6: DNS server request latency. A lower value is better.

The first configuration gives a view of the performance in a network setting

while the second removes the costs of network communication, which have a
tendency to conceal the differences between the systems.

The latency of DNS queries is measured by recording the start time, making
a query, waiting for a response, and reporting the length of the interval between
the start time and the completion time. The program which performed this
measurement reads 100,000 queries from a file sequentially. Three input files
were generated for the measurements:

1.

2.

3.

A list containing only queries in the database; all of the queries matched
records in the server’s database.

A list with a 25% miss rate: 25% of the queries are not in the database,
with an even mix of missing domain names and missing records.

A list with a 50% miss rate.
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Figure 8.6 shows the results of the latency measurements, including the
mean latency for the 100,000 queries and the standard deviation of the laten-
cies. Two features are clear: the aserv server has less consistency in its latency,
leading to the larger standard deviations, and the aserv has a lower latency,
although not significantly lower than tinydns.

The differences in latency are not necessarily meaningful; the aserv server
has less functionality than tinydns and much less than named, so the compar-
ison is not wholly valid. However, the performance of the Austin Protocol
Compiler-generated server is not completely out of reach.

Throughput

Figure 8.7: DNS server request throughput. A higher value is better.

The basic throughput measurements use a program which make 100,000
queries and reports the length of the interval between starting the queries and
completing them. Since there was only a minimal difference between the three
different database miss rates in the latency measurement, only the 0% miss rate
file was used for the throughput and overhead measurements.
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Since each query requires a certain amount of turn-around time, while the
client is parsing the previous response and preparing the next query, the basic
throughput measurement does not adequately show the server throughput. To
close in on the potential throughput, several client processes were executed si-

multaneously, making requests from the same server. The potential throughput
is conceptually the asymptote of the curve described by the throughput of the
server as the number of client processes increases.

Figure 8.7 shows these curves, for both configurations of each of the three
servers. The remote configurations cluster at the bottom of the graph—this
shows the effects of the network communication costs in concealing the differ-
ence between the servers. In both configurations, however, the BIND named
server has the lowest throughput; presumably because it is the largest, most
complex of the programs. The tinydns server and the aserv server are again
fairly close together, with a perhaps meaningless advantage to aserv.

Overhead

Figure 8.8: DNS server CPU overhead. A lower value is better.

The final measurement is the overhead of the server, taken while the server
responds to 100,000 queries from the latency client in the remote configuration.
The measurements were taken using the program time, a tool to summarize
system resources usage. The two portions of the CPU overhead are user time,
showing the CPU time spent by the process itself, and system time, showing
CPU time spent by the operating system kernel on behalf of the process—
performing I/O, for example.

Again in this figure, aserv shows the lowest total cost as well as the lowest
independent system and user times. Again, this is presumably because named
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is a large, complex program, while tinydns takes the approach of opening, ac-
cessing, and closing its database file on each query—hence the larger system

time for it.

Performance of the Austin Protocol Compiler

The measurements in this chapter are not meant to attempt to show that apdns’s
aserv is in any way better than either named or tinydns. The aserv implemen-
tation is deficient in many ways. However, the measurements do demonstrate
that the performance of an Austin Protocol Compiler-based system is entirely
reasonable.

Performance, measured as either throughput, latency, or overhead, has not
been a major driver for the design of the Austin Protocol Compiler. So far,
though, the performance of the simple implementation has been entirely ade-
quate. If performance does become a limiting factor, the design of the Austin
Protocol Compiler has some openings for possible performance improvement.

In the current system, message recognition is integrated with message
parsing. The recognition/parsing process is attempted for each receive
action without favoring any action. However, it should be clear from the

discussion of the message handling functions on page 74 that message
recognition in the Austin Protocol Compiler is easily translatable to a
packet filter approach[72]. With a packet filter system built into the pro-
tocol engine, the runtime system could directly dispatch the appropriate
receive action.

In a similar situation, the current system does not favor any action when
attempting to execute the local actions. An approach to limiting the
search for enabled local actions would be to have the compiler identify
two sets of variables for each action:

1.

2.

The set of variables used in the guard of the action. This set will be
empty for receive and timeout actions, but will be non-empty for
reasonable local actions. This set is called the guard set.

The set of variables possibly modified by statements of the action.
This set is called the watched set.
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Using the guard and modified sets, it is possible to deduce the chaining
behavior of the process’s actions by finding the set of local actions which
may have been enabled by the execution of another the of actions.

Beginning in a state where all of the local actions are disabled, the only
possible step in the process is the receipt of a message or the expiration
of a timeout delay. Following one of those events, the runtime system
can maintain a set of possibly enabled local actions, called trial actions,
built from the watched set of the action handling the event and the guard
sets of the local actions. The trial actions would then be attempted in
turn. When a local action is attempted and found to be enabled, the other
local actions which may be chained from it are also added to the trial
actions. (An executed action must also be re-added to the set, since it
may not have disabled itself.) Actions are removed from the trial set
when they are attempted and found to be disabled. Although there are
degenerate cases, when implementing a reasonable protocol this scheme
should result in fewer attempted actions. For example, it correctly covers
the cases of the two examples from Chapter 7, where the initial action is
executed once and need never be examined again.

Both of these enhancements would introduce considerable complexity into
the Austin Protocol Compiler. So far, neither seems worthwhile, since they
address scaling issues in the protocol specification (the first for larger numbers
of receivable messages and the second for larger numbers of local actions).
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CONCLUDING REMARKS

Summary

In Chapter 1, we identified three classes of problems that, in combination,
uniquely apply to network protocol development:

1.

2.

3.

Intrinsic problems, made up of the problems of safety and liveness, errors
and security associated with any distributed or parallel program.

Extrinsic problems, made up of the problems presented by the environ-
ment of the network protocol, and

Compatibility problems, made up of the difficulties of protocol interop-
erability, protocol extensions, and future protocol enhancements.

In the intervening chapters, we presented the Timed Abstract Protocol nota-
tion, a small, formal language intended for describing asynchronous, message
passing network protocols. We also presented two execution models for TAP:
an abstract execution model suited for protocol design, comprehension, and
verification, and a concrete execution model suited for easy implementation.
We then argued that the two models are equivalent: that a protocol under the
concrete model preserves the intended behavior of the protocol given under the
abstract model.

The equivalence between the abstract execution model and the concrete
execution model yields two further points:

The practice of using high-level abstractions to specify and verify net-
work protocols is entirely valid, as long as the abstractions can be pre-
served by lower-level constructs.
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The practice of using low-level constructs to implement network proto-
cols is also valid, as long as these constructs preserve the abstract behav-
ior of the protocl.

We also described the Austin Protocol Compiler, a system that transforms
a TAP specification of a protocol process into executable C code and that pro-
vides an runtime environment for that code. We finally showed several exam-
ples of protocols implemented using APC.

The final question is how the Timed Abstract Protocol notation and Austin
Protocol Compiler satisfy the three classes of problems from the first chapter.

TAP, under the abstract model, is a powerful tool for describing, com-
prehension, and verifying network protocols. As such, it is well suited
for handling the intrinsic problems, since such problems exist within the
protocol itself and are capable of being formally described.

APC, in combination with TAP, is a powerful tool for implementing net-
work protocols. By allowing a protocol to be written, modified, and
made executable quickly and easily, TAP and APC allow extrinsic prob-
lems to be identified experimentally and allow various approaches for
handling them to be explored.

TAP combined with APC is a powerful tool for specifying network pro-
tocols. By allowing the protocol to be understood in isolation from the
application around it and by easily providing a reference implementa-
tion, the combination eases interoperability problems. Also, since the
combination exposes the protocol as a separate entity, it better shows
openings for protocol extensions and enhancements.

Future directions

The development of the Timed Abstract Protocol notation and the Austin Proto-
col Compiler, as described here, is fundamentally complete. However, a num-
ber of interesting questions remain open and a number of research avenues are
unexplored.



Concluding Remarks 127

Enhancements

The Timed Abstract Protocol notation, along with the abstract and concrete
execution models, is quite effective at describing asynchronous, message pass-
ing network protocols. The limitations placed on the execution models, in
particular, support the development of most network protocols by limiting the
potential effects of faults to the most common problems.

However, a worthwhile direction for research is to investigate changes to
the language and to the abstract and concrete execution models to handle events
such as process failures and security violations.

What is needed is a precise definition of the effects of each additional fea-
ture, in both execution models, and an investigation of the changes to the mod-
els and the equivalence relationship needed to accommodate the feature.

Alternative compiler back ends

The Austin Protocol Compiler implementation currently produces portable C.
While it would be fairly trivial to create other modules to produce code in
different programming languages, more interesting alternatives involve gener-

ating code or specifications for special purposes:

A model checker such as SPIN[37, 38], or TLC[34]. While
TAP provides strong assumptions in order to ease verification and finite-
state model checking has serious limits, model checkers have proved
useful[29]. An alternative back end that produces input for a model
checker would easily provide mechanical validation of some protocols.

Such a back end would also require changes to TAP, which currently
has no way of specifying the properties that the model checker should
validate.

A network simulator such as ns2[73]. Some properties of network pro-
tocols, such as congestion behavior and interaction with other protocols,
are not easily amenable to verification. Frequently, these network pro-
tocols are also difficult or expensive to implement. In these instances, a
network simulator provides feedback to the protocol designer and con-
crete information to potential protocol implementors.
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Alternative runtime systems

Currently, the only available basis network protocol is UDP. However, the im-
plementation separates the runtime library into the generic runtime engine and
support functions, and the basis network protocol interface. Providing addi-
tional basis network protocols, such as IP or any other asynchronous message-
passing protocol, would be a simple extension. The only major requirement is
that the protocol be supported by the BSD socket interface and this requirement
could be removed with some work.

It would also be possible, although not necessarily as simple, to use a non-
message-passing protocol, such as the stream-oriented TCP, as a base proto-
col. While we have not investigated the necessary changes, it is clear that the
message recognition approach would need to be modified since TCP does not
preserve message boundaries.

A third exciting possibility would be the use of APC in entirely different
environments, such as resource-constrained embedded systems like networked
sensors[74]. The constraints on these systems, both in terms of computation
and in terms of the network architecture created when the sensors are deployed
put most common network protocols out of reach. Yet the same constraints re-
quire more out from the network protocol used among the sensors and between
the sensors and a base station.
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